

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-17/0261 vom 2. Juni 2023

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Tragende wärmedämmende Elemente für die thermische Trennung von Bauteilen aus Stahlbeton

Schöck Bauteile GmbH Schöckstraße 1 76534 Baden-Baden DEUTSCHLAND

Schöck Bauteile GmbH, Schöckstraße 1 76534 Baden-Baden, Germany

Schöck Bauteile GmbH, Nordsternstraße 61 45329 Essen, Germany Schöck Bauteile Ges.m.b.H., Handwerkstraße 2 4055 Pucking, Austria

Schöck Sp. z o.o., ul. Przejazdowa 99, 43-100 Tychy, Poland

65 Seiten, davon 4 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 050001-01-0301

ETA-17/0261 vom 7. September 2022

Seite 2 von 65 | 2. Juni 2023

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 65 | 2. Juni 2023

Besonderer Teil

1 Technische Beschreibung des Produkts

Schöck Isokorb[®] mit Druckelementen aus Beton oder Stahl ist ein tragendes wärmedämmendes Verbindungselement zum Anschluss für bewehrte Platten aus Normalbeton. Die Produktbeschreibung ist in Anhang A angegeben.

Die in den Anhängen A1 bis A17 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Verbindungselementes Schöck Isokorb[®] mit Druckelementen aus Beton oder Stahl müssen den in der technischen Dokumentation^[1] dieser Europäischen Technischen Bewertung festgelegten Angaben entsprechen.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn das Verbindungselement Schöck Isokorb® mit Druckelementen aus Beton oder Stahl entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Verbindungselementes Schöck Isokorb[®] mit Druckelementen aus Beton oder Stahl von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Tragfähigkeit	f _{yd} ; Z _{Rd} siehe Anhang C1
	V _{Rd} (Z _{v,Rd}) siehe Anhang C1
	D _{Rd} (N _{ki,d}) siehe Anhang C3 bis C5
	H _{td} (H _{II,d} ; H _{⊥,d} ; H _{IIpl,d}) siehe Anhang C2, C6 und C7

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten der Baustoffe	Siehe Anhang A17
Feuerwiderstand	Siehe Anhang C8 bis C11
Glimmverhalten	Leistung nicht bewertet

Die technische Dokumentation dieser europäisch technischen Bewertung ist beim Deutschen Institut für Bautechnik hinterlegt und soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 4 von 65 | 2. Juni 2023

3.3 Schallschutz (BWR 5)

Wesentliches Merkmal	Leistung	
Trittschalldämmung	ΔL _w siehe Anhang C15 bis C20	
Flankierende Schallübertragung	Leistung nicht bewertet	

3.4 Energieeinsparung und Wärmeschutz (BWR 6)

Wesentliches Merkmal	Leistung
Wärmedurchlasswiderstand	R _{eq,TI} siehe Anhang C13 bis C14

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 050001-01-0301 gilt folgende Rechtsgrundlage: 97/597/EC.

Folgendes System ist anzuwenden: 1+

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Folgende Normen werden in dieser europäisch technischen Bewertung in Bezug genommen:

_	EN 206:2013+A2:2021 EN 1992-1-1:2004/A1:2014	Beton - Festlegung, Eigenschaften, Herstellung und Konformität Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
-	EN 1992-1-2:2004/A1:2019	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall
-	EN 1993-1-1:2005 + A1:2014	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
-	EN 1993-1-4:2006 + A2:2020	Eurocode 3: Bemessung und Konstruktion von Stahl- bauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
-	EN 1998-1:2004/A1:2013	Eurocode 8: Auslegung von Bauwerken gegen Erdbeben - Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten
-	EN 10025-2:2019	Warmgewalzte Erzeugnisse aus Baustählen - Teil 2: Technische Lieferbedingungen für unlegierte Baustähle
-	EN 10088-1:2014	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
-	EN 12664:2001	Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät - Trockene und feuchte Produkte mit mittlerem und

Z47752.23 8.03.01-15/23

niedrigem Wärmedurchlasswiderstand

Seite 5 von 65 | 2. Juni 2023

- EN 13163	3:2012+A2:2016	Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) - Spezifikation
- EN 13245	5-1:2010	Kunststoffe - Profile aus weichmacherfreiem Polyvinylchlorid (PVC-U) für die Anwendung im Bauwesen - Teil 1: Bezeichnung von Profilen aus PVC-U
- EN 1324	5-2:2008 + AC:2009	Kunststoffe - Profile aus weichmacherfreiem Polyvinylchlorid (PVC-U) für die Anwendung im Bauwesen - Teil 2: Profile aus PVC-U und Profile aus PVC-UE für Wand- und Deckenbekleidungen für Innen- und Außenanwendungen
– EN 1350 ²	1-1:2018	Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten
– EN 1350 ²	1-2:2016	Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 2: Klassifizierung mit den Ergebnissen aus den Feuerwiderstandsprüfungen, mit Ausnahme von Lüftungsanlagen
- EN ISO 6	946:2017	Bauteile - Wärmedurchlasswiderstand und Wärmedurchgangs- koeffizient - Berechnungsverfahren (ISO 6946:2017)
- EN ISO 1	0211:2017	Wärmebrücken im Hochbau - Wärmeströme und Oberflächentemperaturen - Detaillierte Berechnungen (ISO 10211:2017)
- EN ISO 1	0456:2007+AC:2009	Baustoffe und Bauprodukte - Wärme- und feuchtetechnische Eigenschaften - Tabellierte Bemessungswerte und Verfahren zur Bestimmung der wärmeschutztechnischen Nenn- und Bemessungswerte (ISO 10456:2007 + Cor. 1:2009)
- EN ISO 1	2354-2:2017	Bauakustik - Berechnung der akustischen Eigenschaften von Gebäuden aus den Bauteileigenschaften - Teil 2: Trittschalldämmung zwischen Räumen (ISO 12354-2:2017)
- EN ISO 1	7855-1:2014	Kunststoffe - Polyethylen (PE)-Formmassen - Teil 1: Bezeichnungssystem und Basis für Spezifikationen (ISO 17855-1:2014)
- EN ISO 1	7855-2:2016	Kunststoffe - Polyethylen (PE)-Formmassen - Teil 2: Herstellung von Probekörpern und Bestimmung von Eigenschaften (ISO 17855-2:2016)

Ausgestellt in Berlin am 2. Juni 2023 vom Deutschen Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Beglaubigt Referatsleiterin Kisan

A.1 Typenübersicht

A.1.1 Schöck Isokorb® mit Druckelementen aus Beton (CCE nach Abschnitt A.2.5): HTE-Modul, HTE-Compact® 20 oder HTE-Compact® 30

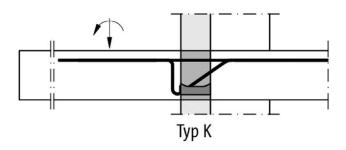


Abb. A.1: Schöck Isokorb® Typ K für frei auskragende Balkone

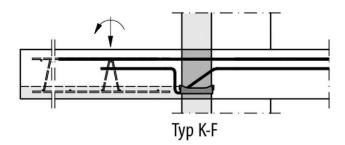


Abb. A.2: Schöck Isokorb® Typ K-F für frei auskragende Balkone in Elementbauweise (Variante mehrteilig)

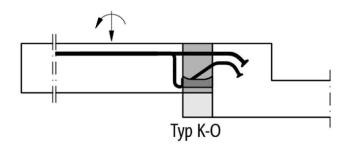


Abb. A.3: Schöck Isokorb® Typ K-O, K-O-F für frei auskragende Balkone mit oder ohne Höhenversatz nach oben oder Wandanschluss

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Typenübersicht Schöck Isokorb® mit Druckelementen aus Beton (CCE)	Anhang A1

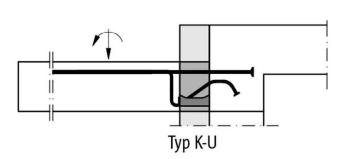
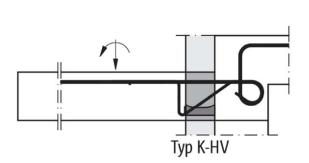



Abb. A.4: Schöck Isokorb® Typ K-U, K-U-F für frei auskragende Balkone mit Höhenversatz nach unten oder Wandanschluss

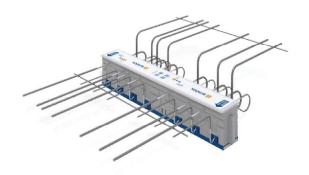


Abb. A.5: Schöck Isokorb® Typ K-HV für frei auskragende Balkone mit Höhenversatz nach unten oder Wandanschluss

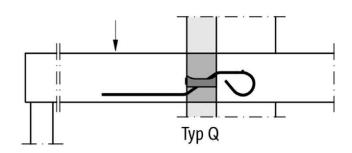


Abb. A.6: Schöck Isokorb® Typ Q für gestützte Balkone, beispielhaft Querkraftstab mit abgebogenem Stabende auf der Deckenseite (alternativ mit geradem Stabende auf der Deckenseite)

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Typenübersicht Schöck Isokorb® mit Druckelementen aus Beton (CCE)	Anhang A2

A.1.2 Schöck Isokorb® mit Druckelementen aus Stahl (SCE nach Abschnitt A.2.4): Stahldrucklager mit angeschweißten Druckplatten oder Druckstab

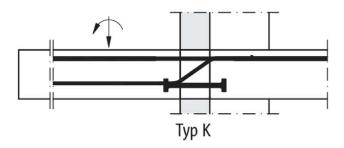


Abb. A.7: Schöck Isokorb® Typ K, K-F (Variante mehrteilig) für frei auskragende Balkone mit Stahldrucklager mit angeschweißten Druckplatten

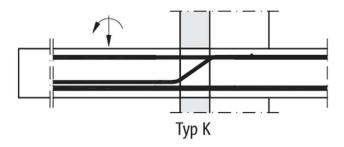


Abb. A.8: Schöck Isokorb® Typ K, K-F (Variante mehrteilig) für frei auskragende Balkone mit Stahldruckstäben

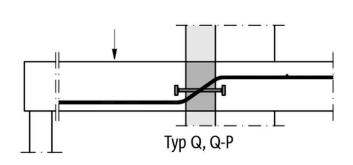


Abb. A.9: Schöck Isokorb® Typ Q, Q-P für gestützte Balkone

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Typenübersicht Schöck Isokorb® mit Druckelementen aus Stahl (SCE)	Anhang A3

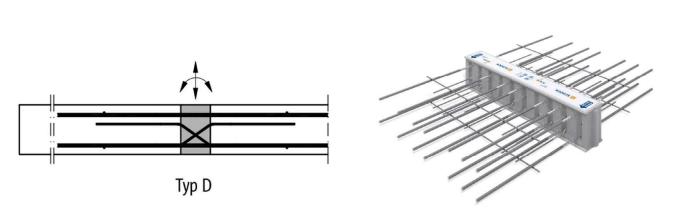


Abb. A.10: Schöck Isokorb® Typ D für durchlaufende Decken

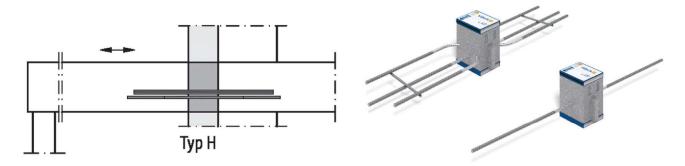


Abb. A.11: Schöck Isokorb® Typ H, Ergänzung für Horizontallasten senkrecht und parallel zur Dämmfuge

Abb. A.12: Schöck Isokorb® Typ A für Brüstungen und Attiken

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Typenübersicht Schöck Isokorb® mit Druckelementen aus Stahl (SCE)	Anhang A4

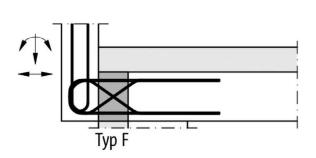


Abb. A.13: Schöck Isokorb® Typ F für vorgesetzte Brüstungen

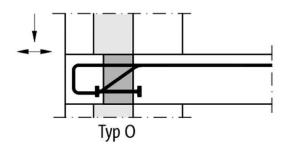


Abb. A.14: Schöck Isokorb® Typ O für Konsolen

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Typenübersicht Schöck Isokorb® mit Druckelementen aus Stahl (SCE)	Anhang A5

A.2 Abmessungen und Lage der Stäbe und Druckelemente im Bereich der Dämmfuge

Allgemein:

Elementhöhe: 160 mm ≤ H ≤ 500 mm

Dämmstoffstärke:
 80 mm oder 120 mm mit Druckelementen aus Beton (CCE)

60 mm bis 120 mm mit Druckelementen aus Stahl (SCE)

Zugstäbe gemäß Abschnitt A.2.1:

Durchmesser: Ø ≤ 20 mm

abgestufte Nenndurchmesser nach Abschnitt A.2.1

Anzahl pro Meter: n ≥ 4/m

Achsabstand: ≤ 300 mm, im Mittel ≤ 250 mm

Einbindelänge nichtrostender Stahl ≥ 100 mm innerhalb der angrenzenden Betonbauteile

Querkraftstäbe gemäß Abschnitt A.2.2:

Durchmesser: Ø ≤ 8 mm bei Anordnung zwischen Einzelelementen der

Drucklagerpaare CCE (Typ K, K-F mit CCE)

Ø ≤ 14 mm für alle anderen Typen

Anzahl pro Meter: n ≥ 4/m bei Anordnung zwischen Einzelelementen der

Drucklagerpaare CCE (Typ K, K-F mit CCE)

 $n \ge 2/m$ für $\emptyset < 8$ mm $n \ge 4/m$ für $\emptyset \ge 8$ mm

Achsabstand: ≤ 300 mm, im Mittel ≤ 250 mm bei Anordnung zwischen

Einzelelementen der Drucklagerpaare CCE (Typ K) ≤ 600 mm, im Mittel ≤ 500 mm für Ø < 8 mm

≤ 300 mm, im Mittel ≤ 250 mm für Ø ≥ 8 mm

Einbindelänge nichtrostender Stahl: ≥ 100 mm innerhalb der angrenzenden Betonbauteile

• Neigung in der Dämmfuge: in der Regel α = 45° bei 60 mm oder 80 mm

Dämmstoffstärke.

α = 35° bei 120 mm Dämmstoffstärke

Betonfreier Bereich: Stäbe dürfen keine Krümmung aufweisen

Anfangspunkt der Innenkrümmung: ≥ 2 Ø von freier Betonfläche, in Stabrichtung gemessen

Biegerollendurchmesser: Ø_{BR} ≥ 10 Ø

Biegerollendurchmesser im Bereich gemäß Abschnitt A.2.2 und Abb. A.44 und unter Beachtung

des Druckelements aus Beton (CCE): der Regeln nach EN 1992-1-1

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Produktbeschreibung

Abmessungen

Anhang A6

747724 23 8 03 01-15/23

Horizontal geneigte Stäbe gemäß Abschnitt A.2.3:

Durchmesser: Ø ≤ 12 mm

Einbindelänge nichtrostender Stahl: ≥ 100 mm innerhalb der angrenzenden Betonbauteile

Neigung in der Dämmfuge: α = 45°

Betonfreier Bereich: Stäbe dürfen keine Krümmung aufweisen

Biegerollendurchmesser: Ø_{BR} ≥ 10 Ø

Anfangspunkt der Innenkrümmung: ≥ 2 Ø von freier Betonfläche, in Stabrichtung gemessen

Druckelemente aus Stahl (SCE) gemäß Abschnitt A.2.4:

Durchmesser: Ø ≤ 20 mm
 Anzahl pro Meter: n ≥ 4/m

Achsabstand: ≤ 300 mm, im Mittel ≤ 250 mm

Zwei Ausführungsvarianten:

1) Druckkräfte werden über Verbundwirkung des Betonstahls weitergeleitet

■ Einbindelänge nichtrostender Stahl ≥ 100 mm innerhalb der angrenzenden Betonbauteile

2) Weiterleitung über eine Druckplatte, wenn mit diesem Stab planmäßig keine Zugkräfte übertragen werden

Druckplatte besteht aus Baustahl
 Einbindelänge nichtrostender Stahl ≥ 50 mm innerhalb der angrenzenden Betonbauteile

Druckplatte besteht aus nichtrostendem Stahl
 Einbindelänge nichtrostender Stahl kann bündig erfolgen

Druckplatten werden an die Stirnseiten der Druckstäbe kraftschlüssig geschweißt

Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5:

Anzahl pro Meter: n ≥ 4/m
 Lichter Abstand: ≤ 250 mm
 Mindestanzahl je anzuschließendes n ≥ 4

Bauteil:

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Produktbeschreibung
Abmessungen

Anhang A7

A.2.1 Zugstabvarianten

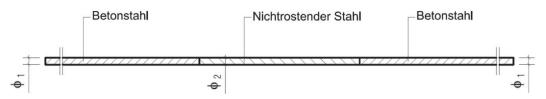


Abb. A.15: Zugstab ohne Durchmesserkombination

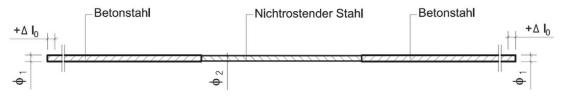


Abb. A.16: Zugstab mit Durchmesserkombination

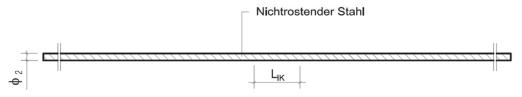


Abb. A.17: Zugstab aus nichtrostendem Betonstahl

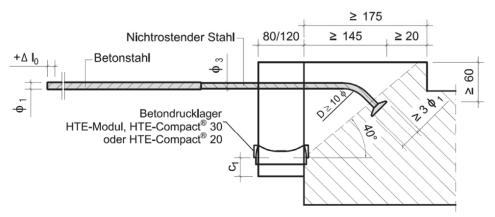


Abb. A.18: Zugstab für Schöck Isokorb® Typ K-O und Typ K-O-F mit Durchmesserkombination und Lage des Ankerkopfs

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Zugstabvarianten	Anhang A8

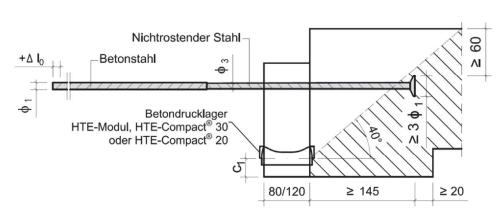


Abb. A.19: Zugstab für Schöck Isokorb® Typ K-U und Typ K-U-F mit Durchmesserkombination und Lage des Ankerkopfs

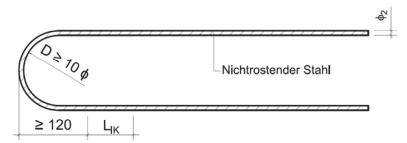


Abb. A.20: Zugstab für Schöck Isokorb® Typ A und Typ F

Tabelle A.1: Durchmesserkombinationen und Zuschläge zur Übergreifungslänge für Zugstäbe nach Abb. A.16

Abgestufte Zugstäbe Ø ₁ - Ø ₂ - Ø ₁	R _{p0,2} [N/mm²] für Betonstahl mit Ø₁ [mm]	R _{p0,2} [N/mm²] für nichtrostenden Stahl mit Ø ₂ [mm]	∆ l₀ [mm]
8 - 6,5 - 8	500	800	20
8 - 7 - 8	500	700	13
10 - 8 - 10	500	700 / (820 optional)	20
12 - 9,5 - 12	500	820	20
12 - 10 - 12	500	700	17
12 - 11 - 12	500	700	9
14 - 12 - 14	500	700	14

Tabelle A.2: Durchmesserkombinationen und Zuschläge zur Übergreifungslänge für Zugstäbe nach Abb. A.18 und Abb. A.19

Abgestufte Zugstäbe Ø ₁ - Ø ₃	R _{p0,2} [N/mm²] für Betonstahl mit Ø₁ [mm]	$R_{p0,2}$ [N/mm ²] für nichtrostenden Stahl mit \emptyset_3 [mm]	∆ l₀ [mm]
12 - 10 500		700	17

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Zugstabvarianten	Anhang A9

A.2.2 Querkraftstabvarianten

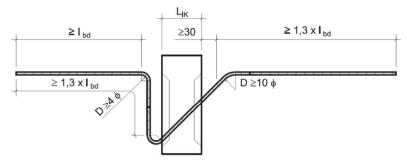


Abb. A.21: Querkraftstab für Schöck Isokorb® Typ K, K-F mit aufgebogenem Stabende auf der Balkonseite

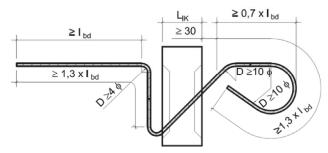


Abb. A.22: Querkraftstab für Schöck Isokorb® Typ K, K-F mit aufgebogenem Stabende auf der Balkonseite und abgebogenem Stabende auf der Deckenseite

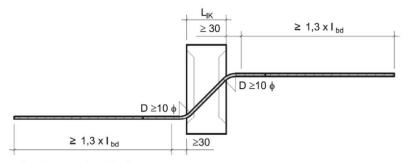


Abb. A.23: Querkraftstab mit geraden Stabenden

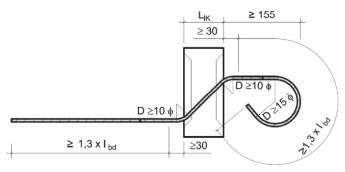


Abb. A.24: Querkraftstab mit abgebogenem Stabende auf der Deckenseite

mit I_{bd} ≥ I_{b,min} nach EN 1992-1-1

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Querkraftstabvarianten	Anhang A10

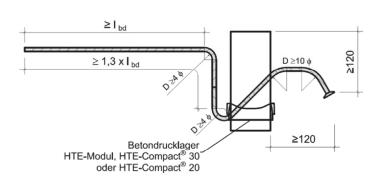


Abb. A.25: Querkraftstab für Schöck Isokorb® Typ K-U, K-U-F, K-O und K-O-F

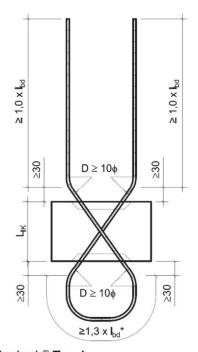


Abb. A.26: Querkraftstab für Schöck Isokorb® Typ A

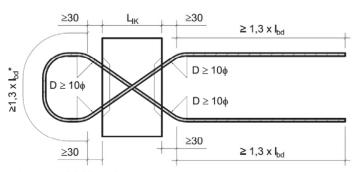


Abb. A.27: Querkraftstab für Schöck Isokorb® Typ F

mit $I_{bd} \ge I_{b,min}$ nach EN 1992-1-1

* mit $\alpha_1 = 0.7$

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Querkraftstabvarianten	Anhang A11

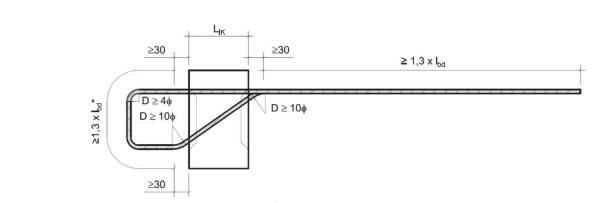


Abb. A.28: Querkraftstab für Schöck Isokorb® Typ O

A.2.3 Horizontalstabvarianten

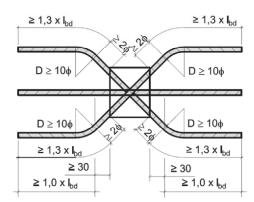


Abb. A.29: Horizontalstäbe geneigt und gerade für Schöck Isokorb® Typ H-VV-NN, Aufsicht

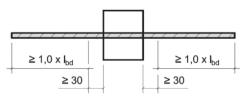


Abb. A.30: Horizontalstab gerade für Schöck Isokorb® Typ H-NN, Aufsicht

mit $I_{bd} \ge I_{b,min}$ nach EN 1992-1-1

* mit $\alpha_1 = 0.7$

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Querkraftstabvarianten / Horizontalstabvarianten	Anhang A12

A.2.4 Druckelementvarianten aus Stahl (SCE)

Abb. A.31: Druckelement aus Stahl mit angeschweißten Druckplatten, beidseitig min. 50 mm einbindend

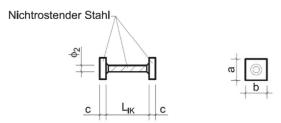


Abb. A.32: Druckelement aus Stahl mit angeschweißten Druckplatten, beidseitig bündig

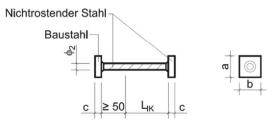


Abb. A.33: Druckelement aus Stahl mit angeschweißten Druckplatten, einseitig bündig, einseitig min. 50 mm einbindend (bspw. für Schöck Isokorb® Typ K-ID, Schöck Isokorb® RT Typ K)

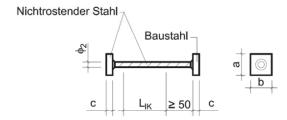


Abb. A.34: Druckelement aus Stahl mit angeschweißten Druckplatten, einseitig min. 50 mm, einseitig kleiner 50 mm einbindend (bspw. für Schöck Isokorb® Typ O)

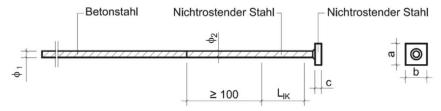


Abb. A.35: Druckelement aus Stahl mit angeschweißter Druckplatte und angeschweißtem Betonstahl

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Druckelementvarianten aus Stahl (SCE)	Anhang A13

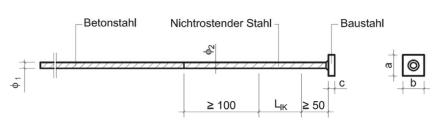


Abb. A.36: Druckelement aus Stahl mit angeschweißter Druckplatte und angeschweißtem Betonstahl

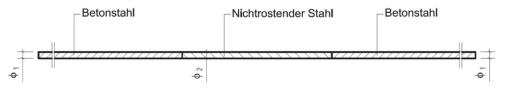


Abb. A.37: Druckelement aus Stahl mit beidseitig angeschweißtem Betonstahl

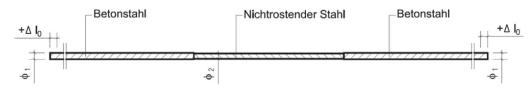


Abb. A.38: Druckelement aus Stahl mit beidseitig angeschweißtem Betonstahl, mit Durchmesserkombination, Tabelle A.1 gilt auch für dieses Druckelement aus Stahl

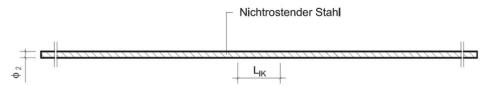


Abb. A.39: Druckelement aus nichtrostendem Betonstahl

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Druckelementvarianten aus Stahl (SCE)	Anhang A14

A.2.5 Druckelementvarianten aus Beton (CCE)

Abb. A.40: Druckelement aus Beton HTE-Modul und HTE-Compact® 30, Dämmstoffstärke 80 mm

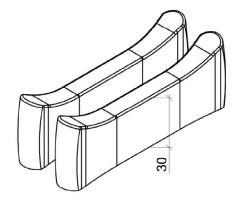


Abb. A.41: Druckelement aus Beton HTE-Modul und HTE-Compact® 30, Dämmstoffstärke 120 mm

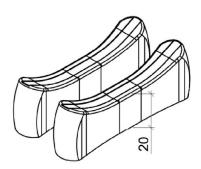


Abb. A.42: Druckelement aus Beton HTE-Compact® 20, Dämmstoffstärke 80 mm

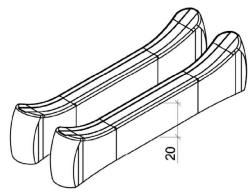


Abb. A.43: Druckelement aus Beton HTE-Compact® 20, Dämmstoffstärke 120 mm

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Produktbeschreibung

Druckelementvarianten aus Beton (CCE)

Anhang A15

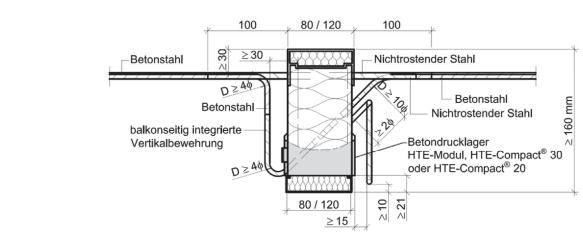


Abb. A.44: Schöck Isokorb® Typ K mit CCE mit integrierter Vertikalbewehrung gem. Abschnitt D.1.1 und Sonderbügel

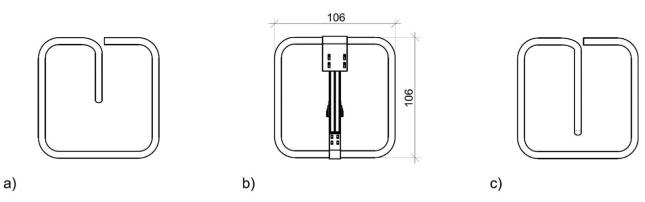
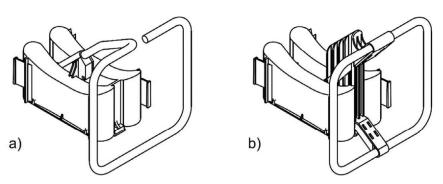
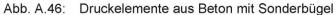
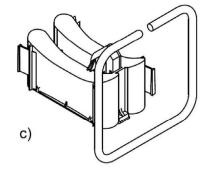





Abb. A.45: Sonderbügel nichtrostender Stahl

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Produktbeschreibung Druckelementvarianten aus Beton (CCE)	Anhang A16

A.3 Werkstoffe

Betonstahl: B500B, Klasse A1 nach EN 13501-1

Nichtrostender Stahl: Nichtrostender Betonstahl,

nichtrostender Rundstahl (S355, S460, S690),

nichtrostender Flachstahl für Druckplatten (S235, S275, S460)

mit Korrosionswiderstandsklasse III nach EN 1993-1-4,

Klasse A1 nach EN 13501-1

Baustahl: S235JR, S235J0, S235J2, S355JR, S355J2 oder S355J0 nach

EN 10025-2 für Druckplatten, Klasse A1 nach EN 13501-1

Beton für das Druckelement CCE: Hochleistungsfeinbeton, Klasse A1 nach EN 13501-1

Dämmfuge: Polystyrol-Hartschaum (EPS) nach EN 13163,

Klasse E nach EN 13501-1

Brandschutzmaterial: Feuchtigkeitsabweisende, witterungsbeständige und UV-resistente

Ausführung, Klasse A1 nach EN 13501-1

Kunststoffschalung CCE: PE-HD Kunststoff nach EN ISO 17855-1 und EN ISO 17855-2,

Klasse E nach EN 13501-1

Im Brandfall aufschäumender Baustoff: Halogenfreier, dreidimensional aufschäumender Baustoff auf

Graphit-Basis mit Aufschäumfaktor min. 14,

Klasse E nach EN 13501-1

Kunststoffschienen: PVC-U nach EN 13245-1 und EN 13245-2,

Klasse E nach EN 13501-1

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Produktbeschreibung

Werkstoffe

Anhang A17

B.1 Anwendungsbedingungen

Mit diesem Produkt können außenliegende Platten sowie vertikale Bauteile wie Konsolen, Wände, Brüstungen oder Attiken verbunden werden. Die Kräfte werden durch Verbund bzw. Flächenpressung an die angrenzenden Bauteile übertragen.

Hauptsächlich soll das Produkt verwendet werden:

- zur Minimierung von Wärmebrücken in Bauwerken,
- zur Übertragung von statischen oder quasi-statischen Einwirkungen,
- zur Übertragung von Erdbebeneinwirkungen,
- in Bauteilen mit Anforderungen an den Feuerwiderstand,
- in Bauteilen mit Anforderungen an den Schallschutz,
- für zu verbindende Stahlbetonbauteile aus Normalbeton der Mindestbetonfestigkeitsklasse nach EN 206: C20/25, bei Außenbauteilen C25/30,
- zum Anschluss f
 ür 160 mm bis 500 mm dicke Platten aus Stahlbeton

B.1.1 Entwurf

Es gelten EN 1992-1-1 und EN 1993-1-1 und die Bestimmungen nach Anhang D.

- Die angeschlossene Platte ist durch Dehnfugen zu unterteilen, um die thermische Belastung zu reduzieren, siehe Abschnitt B.2.1.
- Der statische Nachweis der Weiterleitung der Kräfte muss geführt werden. Der Nachweis der Weiterleitung der Kräfte zwischen Schöck Isokorb[®] Elementen und dem angeschlossenen Stahlbeton ist nach Anhang D zu führen.
- Abweichungen vom Dehnungszustand einer baugleichen Platte ohne Dämmfuge sind durch Einhaltung dieser Europäisch Technischen Bewertung auf den Fugenbereich sowie die anschließenden Ränder begrenzt.
- Im Abstand h vom Fugenrand darf dann der ungestörte Dehnungszustand angenommen werden.
- Veränderliche Momente und Querkräfte entlang angeschlossenem Rand sind zu berücksichtigen.
- Beanspruchung der Plattenanschlüsse durch lokale Torsionsmomente sind auszuschließen.
- Kleine Normalkräfte aus Zwang in den Gurtstäben (am Ende von Linienlagern, z. B. neben freien Rändern oder Dehnfugen) dürfen rechnerisch vernachlässigt werden. Zwangsnormalkräfte in Richtung der Stäbe der Plattenanschlüsse müssen ausgeschlossen werden (Beispiel siehe Abschnitt B.2.1).
- Wenn die mit den Plattenanschlüssen anzuschließenden Platten als Elementdeckenplatten ausgeführt werden, ist Abb. B.5 zu beachten.
- Das Verhältnis von Höhe / Breite der angrenzenden Bauteile sollte das Verhältnis 1/3 nicht überschreiten, wenn kein gesonderter Nachweis zur Aufnahme der auftretenden Querzugspannungen geführt wird.
- Das Zuschneiden der Elemente ist erlaubt. Die Bedingungen nach Abschnitt A.2 müssen nach dem Schneiden erfüllt sein.

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Anwendungsbedingungen	Anhang B1

B.2 Einbaubestimmungen

B.2.1 Achs- und Fugenabstände

Zug- und Druckglieder, Querkraftstäbe (Regelungen nach Abschnitt D.1.2.5):

50 mm
$$\leq s_1 \leq \frac{1}{2} s_{2,max}$$

mit:

s₁ Achsabstand vom freien Rand bzw. der Dehnungsfuge

s_{2,max} zulässiger Maximalabstand der Stäbe untereinander

- außenliegende Betonbauteile: rechtwinklig zur Dämmfuge sind Dehnfugen anzuordnen (siehe Abb. B.2)
- Fugenabstand: Tabelle B.1
- Schöck Isokorb® Typen H-VV-NN, gemäß Abb. A.11 und Abb. A.29, sind im Bereich des Verschiebungsruhepunktes anzuordnen (vgl. Abb. B.1)

Tabelle B.1: Zulässige Fugenabstände in [m]*

Dicke der	Stabdurchmesser in der Fuge [mm]						
Dämmfuge [mm]	≤ 9,5	10	11	12	14	16	20
60	8,1	7,8	7,3	6,9	6,3	5,6	5,1
80	13,5	13,0	12,2	11,7	10,1	9,2	8,0
120	23,0	21,7	20,6	19,8	17,0	15,5	13,5

^{*}Für Zwischenwerte darf linear interpoliert werden.

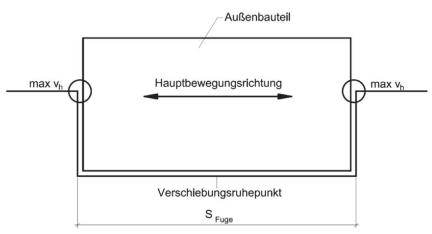


Abb. B.1: Einbausituation mit Lagerung zwischen gegenüberliegenden Rändern

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B2

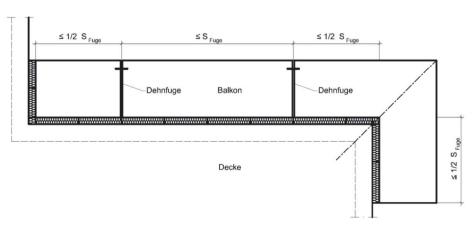


Abb. B.2: Einbausituation mit Dehnfugen

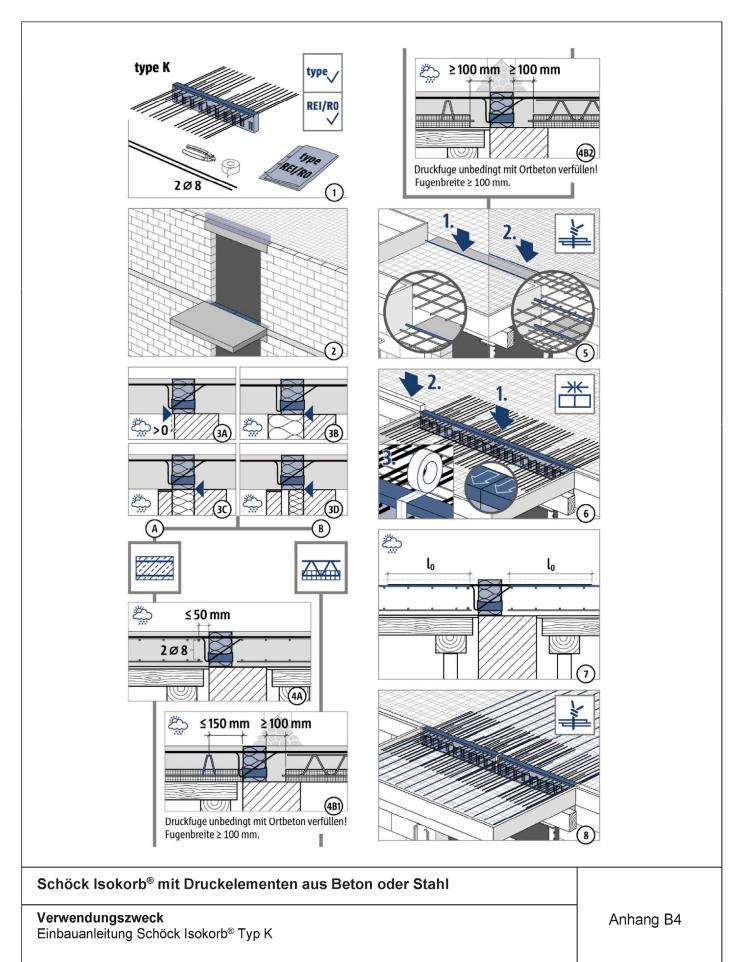
B.2.2 Bauliche Durchbildung

Mindestbetondeckung nach EN 1992-1-1 für Zugstäbe, Querbewehrung und Montagebewehrung. Bewehrung der an die Plattenanschlüsse anschließenden Betonkonstruktionen ist unter Berücksichtigung der erforderlichen Betondeckung nach EN 1992-1-1 bis an die Dämmfuge heranzuführen.

Querstäbe der oberen Anschlussbewehrung müssen in der Regel außen auf den Längsstäben der Plattenanschlüsse liegen. Abweichungen bei Stabdurchmessern \emptyset < 16 mm sind möglich, wenn folgende Bedingungen eingehalten werden:

- Einbau der Querstäbe direkt unter den Längsstäben ist möglich.
- Einbau wird kontrolliert, z. B. durch Fachbauleiter.
- Montageschritte müssen in Einbauanleitung beschrieben sein (siehe Anhang B4).

Stirnflächen der anzubindenden Bauteile müssen eine konstruktive Randeinfassung nach EN 1992-1-1, Abschnitt 9.3.1.4 erhalten, z. B. in Form von Steckbügeln mit mindestens $\emptyset \ge 6$ mm, s ≤ 250 mm und je 2 Längsstäben, $\emptyset \ge 8$ mm. Die vertikalen Schenkel der Querkraftstäbe bei den Schöck Isokorb® Typen K, K-F, K-O, K-U und HV (siehe Abb. A.21, Abb. A.22 und Abb. A.25) sowie Gitterträger mit einem maximalen Abstand von 100 mm zur Dämmfuge nach Abb. B.5 dürfen angerechnet werden.


Bewehrung der Randeinfassung an den parallel zu den Plattenanschlüssen verlaufenden Bauteilseiten ist wie folgt auszubilden:

- Es werden Momente und Querkräfte übertragen:
 - Zugstäbe sind zu übergreifen.
- Es werden zusätzlich abhebende Querkräfte bzw. abhebende Momente übertragen:
 - Zug- und Druckstäbe sind zu übergreifen.
- Es werden ausschließlich Querkräfte übertragen:
 - Die Zugbewehrung im Bereich des Plattenanschlusses darf nicht gestaffelt werden.
 - Die Zugbewehrung an der Stirnseite der Platte ist mittels Haken in der Druckzone zu verankern.
 - Alternativ: Steckbügel an jedem Querkraftstab anordnen.

Das nachträgliche Abbiegen der Stäbe des Plattenanschlusses ist nicht zulässig.

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B3

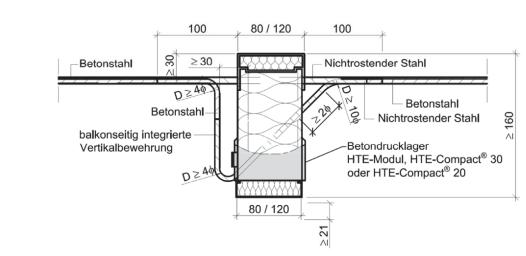


Abb. B.3: Beispiel für Schöck Isokorb® Typ K mit CCE

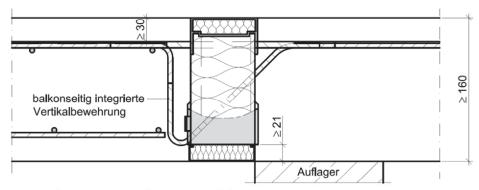


Abb. B.4: Beispiel für Schöck Isokorb® Typ K mit CCE in eingebautem Zustand

Werden die an Plattenanschlüsse anschließenden Platten als Elementdeckenplatten ausgeführt, gelten folgende Bedingungen:

- Ortbetonstreifen gemäß Abb. B.5 von mindestens 100 mm Breite zwischen Plattenanschluss und anzuschließender Elementdecke ausführen
- Betonzusammensetzung der Ortbetonfuge (Größtkorn der Gesteinskörnung dg) ist auf diesen Abstand abzustimmen

Anhang B5
,

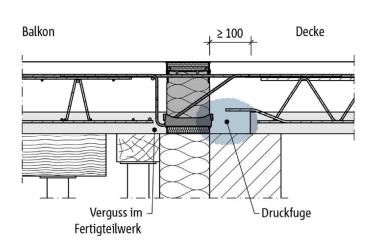


Abb. B.5: Schöck Isokorb® Typ K mit CCE oder SCE und Elementplatten, Druckfuge

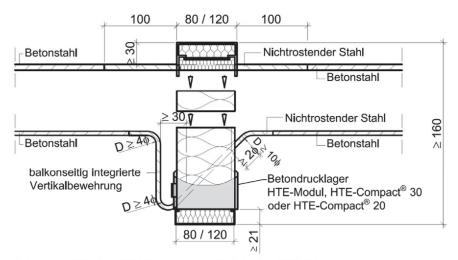


Abb. B.6: Beispiel für Schöck Isokorb® Typ K-F (Variante mehrteilig) mit CCE

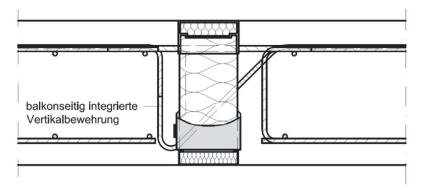


Abb. B.7: Beispiel für Schöck Isokorb® Typ K gem. Abb. B.3 mit CCE bei indirekter Lagerung

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B6

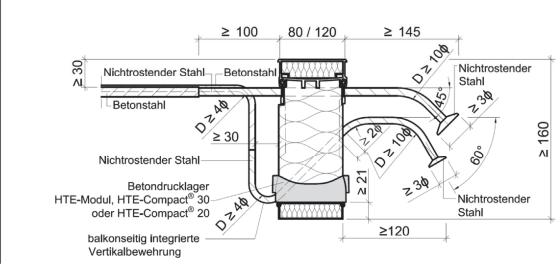


Abb. B.8: Beispiel für Schöck Isokorb® Typ K-O mit CCE

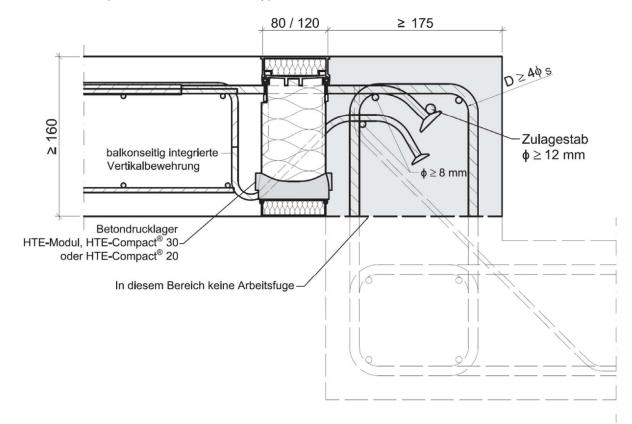


Abb. B.9: Beispiel für Schöck Isokorb® Typ K-O mit CCE in eingebautem Zustand mit Anschluss an Wand oder Höhenversatz

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B7

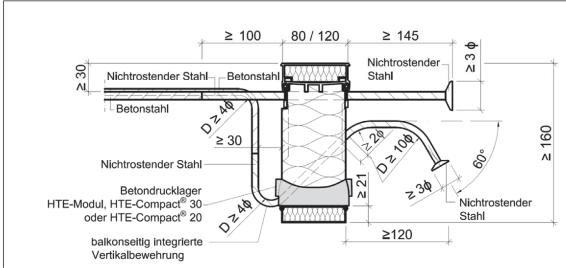


Abb. B.10: Beispiel für Schöck Isokorb® Typ K-U mit CCE

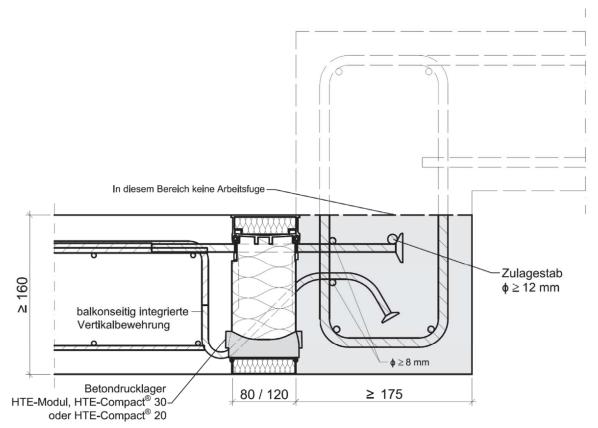


Abb. B.11: Beispiel für Schöck Isokorb® Typ K-U mit CCE in eingebautem Zustand mit Anschluss an Wand oder Höhenversatz

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B8

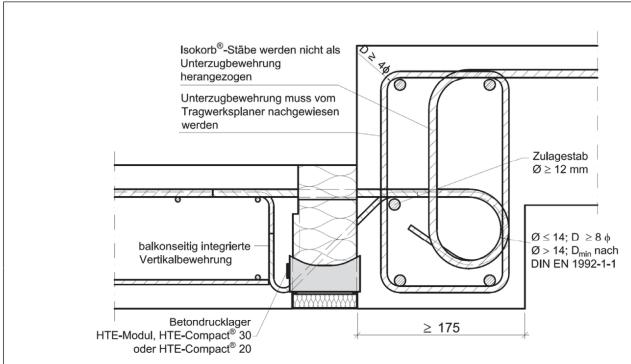


Abb. B.12: Beispiel für Schöck Isokorb® Typ K-HV mit CCE

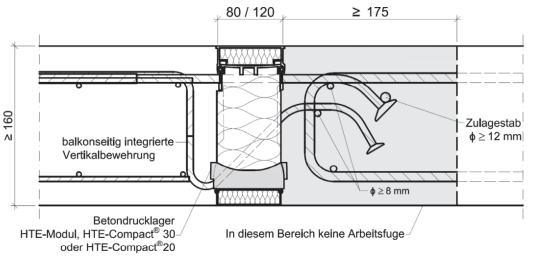


Abb. B.13: Beispiel für Schöck Isokorb® Typ K-O mit CCE im Deckenanschluss ohne Versatz

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B9

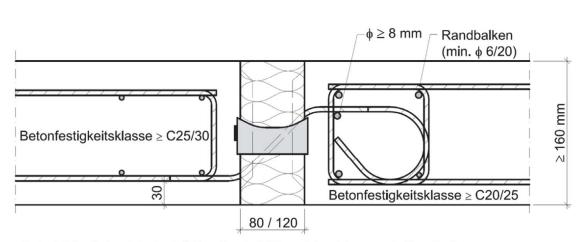


Abb. B.14: Beispiel für Schöck Isokorb® Typ Q mit CCE und Ausführung als Randbalken

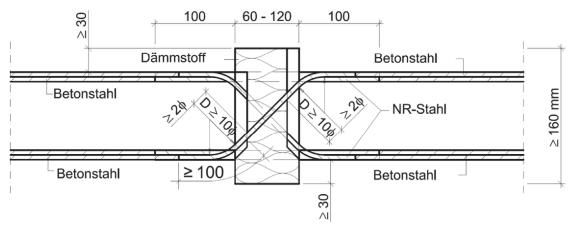


Abb. B.15: Beispiel für Schöck Isokorb® Typ D mit SCE

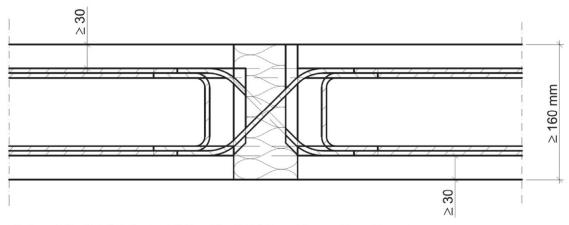


Abb. B.16: Beispiel für Schöck Isokorb® Typ D mit SCE und bauseitiger Bewehrung

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B10

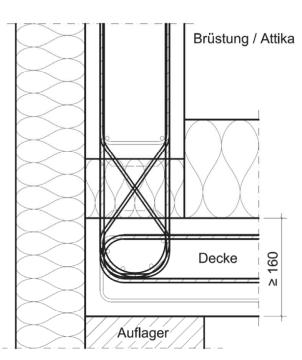


Abb. B.17: Beispiel für Schöck Isokorb® Typ A mit SCE und bauseitiger Bewehrung

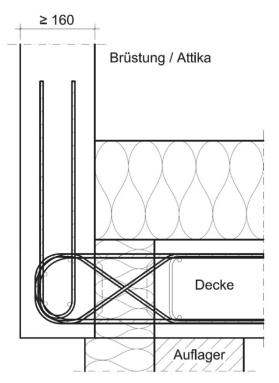


Abb. B.18: Beispiel für Schöck Isokorb® Typ F mit SCE und bauseitiger Bewehrung

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B11

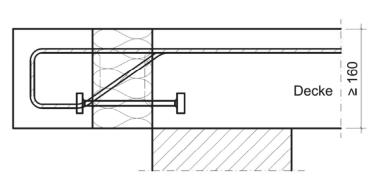


Abb. B.19: Beispiel für Schöck Isokorb® Typ O mit SCE

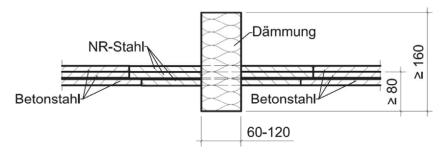


Abb. B.20: Beispiel für Schöck Isokorb® Typ H mit SCE

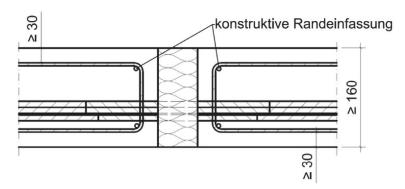


Abb. B.21: Beispiel für Schöck Isokorb® Typ H mit SCE und bauseitiger Bewehrung

B.2.3 Hinweise zur Verwendung bei Anforderungen an den Brandschutz

Werden brandschutztechnische Anforderungen an die Elemente zur Verbindung von Stahlbetonbauteilen gestellt, sind die Bestimmungen von Abschnitt C.2 einzuhalten.

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Verwendungszweck Einbaubestimmungen	Anhang B12

C.1 Tragfähigkeit

C.1.1 Tragfähigkeit der Stäbe

C.1.1.1 Zug- und Querkraftstäbe

Tabelle C.1: Bemessungswerte bei Zugbeanspruchung für die verwendeten Stäbe

Stab aus	f _{yd} [N/mm²]
Nichtrostender Betonstahl (R _{p0,2} = 500 N/mm²)	435
Nichtrostender Betonstahl (R _{p0,2} = 700 N/mm²)	609 (für Zugstäbe)
Nichtrostender Betonstahl (R _{p0,2} = 800 N/mm²)	661 (für Zugstäbe)
Nichtrostender Betonstahl (R _{p0,2} = 820 N/mm²)	678 (für Zugstäbe)
Rundstahl S355	323
Rundstahl S460	418
Rundstahl S690	627

C.1.1.2 Zugstäbe mit Ankerkopf (Typ K-O, K-U)

Der maximale Bemessungswert für die Zugkraft je Stab ergibt sich aus der Betonfestigkeitsklasse und Verankerung des Ankerkopfes nach Tabelle C.2. Pro Meter dürfen maximal zehn Zugstäbe mit Ankerkopf angeordnet werden.

Tabelle C.2: Zugbeanspruchbarkeit von Zugstäben mit Ankerkopf in Abhängigkeit der Verankerung

Betonfestigkeitsklasse	Verankerung des Ankerkopfs	Z _{Rd} [kN]	
C25/30	Gemäß Abb. A.18 und Abb. A.19, innerhalb des schraffierten Bereichs	47,8	
G25/30	Gemäß Abb. A.18 und Abb. A.19, außerhalb des schraffierten Bereichs	34,1	
000/05	Gemäß Abb. A.18 und Abb. A.19, innerhalb des schraffierten Bereichs	43,0	
C20/25	Gemäß Abb. A.18 und Abb. A.19, außerhalb des schraffierten Bereichs	30,7	

C.1.1.3 Querkraftstäbe mit Ankerkopf (Typ K-O, K-U)

Pro Meter sind maximal sechs Querkraftstäbe mit Nenndurchmesser 8 mm mit Ankerkopf anzuordnen. Die Bemessungswerte je Stab sind Tabelle C.3 zu entnehmen.

Tabelle C.3: Bemessungswerte je Querkraftstab

Betonfestigkeitsklasse	Z _{V,Rd} [kN]
C25/30	21,8
C20/25	19,6

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit	Anhang C1

C.1.1.4 Horizontalstäbe

Tabelle C.4: Bemessungswerte der horizontalen Kraft parallel zur Fuge H_{II,d} für horizontal geneigte Stabpaare

Anzahl und Durchmesser	Dämm- stoff- stärke	Stab- neigung	Vertikaler Rand- abstand gemäß Abb. B.20	1,3 · I _{bd} gemäß Abb. A.29	H _{II,d} C20/25	H _{II,d} C25/30
[mm]	[mm]	[°]	[mm]	[mm]	[kN]	[kN]
2 Ø 10	80	45	≥ 80	160	±10,3	±12,2
2 Ø 10	120	45	≥ 80	136	±8,8	±10,4
2 Ø 12	80	45	≥ 80	457	±31,4	±39,2
2 Ø 12	120	45	≥ 80	431	±31,4	±39,2

Tabelle C.5: Bemessungswerte der horizontalen Kraft senkrecht zur Fuge H_{⊥,d} für horizontal gerade Stäbe

Durchmesser	Dämm- stoff- stärke	1,0 · I _{bd} gemäß Abb. A.30	H _{⊥,d} C20/25	H _{1,d} C25/30	
[mm]	[mm]	[mm]	[kN]	[kN]	
10	80	155	±11,2	±13,3	
10	120	135	±9,8	±11,6	
12	80	500	±43,5	±49,2	
12	120	480	±41,8	±49,2	

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit	Anhang C2

C.1.1.5 Druckelemente aus Stahl (SCE)

Tabelle C.6: Bemessungswerte N_{ki,d} der Druckkraft für nichtrostende Stäbe

Ø	Dämmstoff- stärke	System- länge	NR Betonstahl R _{p0,2} 500	NR Betonstahl R _{p0,2} 700	NR Rundstahl S460	NR Rundstahl S690
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	72	-	11,0	-	-
6	80	92	-	10,7	-	-
	120	132	-	8,2	-	-
	60	76	-	21,3	-	-
8	80	96	-	21,7	-	-
	120	136	-	17,8	-	-
	60	80	-	35,0	27,4	-
10	80	100	-	36,3	26,0	-
	120	140	-	31,5	23,3	-
	60	84	-	52,1	40,5	-
12	80	104	-	53,6	38,8	-
	120	144	-	49,5	35,4	-
14	80	108	53,4	71,5	54,1	70,7
14	120	148	49,2	67,3	50,1	64,4
16	80	112	-	-	72,1	100,7
10	120	152	-	-	67,4	95,4
20	80	120	-	-	115,7	152,4
20	120	160	-	-	110,0	143,0

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit	Anhang C3

C.1.2 Tragfähigkeit der Druckelemente aus Beton (CCE)

C.1.2.1 Allgemein

Der Bemessungswert der übertragbaren Druckkraft D_{Rd} berechnet sich in Abhängigkeit der Drucklagervariante:

$$D_{Rd} = \min \begin{cases} n \cdot D_{Rd,c} \\ n \cdot D_{Rd,CCE} \end{cases}$$

mit:

D_{Rd} Bemessungswert der übertragbaren Druckkraft in kN/m

n Vorhandene Anzahl der Drucklagerpaare/m

 $\begin{array}{ll} D_{Rd,c} & \text{Bemessungswert für die Betonkantentragfähigkeit in kN/Lagerpaar} \\ D_{Rd,CCE} & \text{Bemessungswert der Drucklagertragfähigkeit für ein Lagerpaar in kN} \end{array}$

C.1.2.2 HTE-Modul

D_{Rd,CCE} = 34,4 kN

Tabelle C.7: Bemessungswerte für HTE-Modul (ersatzweise HTE-Compact® 30)

/lindestachsabstand CCE, Drucklageranzahl/m	Betonfestigkeitsklasse	D _{Rd,c} [kN/Lagerpaar]	
FO	C20/25	25,5	
50 mm	C25/30	31,8	
11 - 18	≥C30/37	34,4	
<i>FF</i>	C20/25	26,6	
55 mm	C25/30	33,3	
11 - 16	≥C30/37	34,4	
00	C20/25	27,8	
60 mm	C25/30	34,4	
11 - 14	≥C30/37	34,4	
400	C20/25	34,4	
100 mm	C25/30	34,4	
4-10	≥C30/37	34,4	

Bei Anschlusssituationen wie in Abb. B.11 und Abb. B.12 sind die Bemessungswerte nach Tabelle C.7 unter Berücksichtigung von a_{c,uz} und a_{c,z} zu ermitteln und max. 16 Drucklager zu verwenden. mit:

 $a_{c,uz} \dots$ siehe Tabelle C.8 $a_{c,z} \dots$ siehe Tabelle C.9

Überschreitet der Bemessungswert der Druckkraft 350 kN/m, so sind auflagerseitig vier Sonderbügel pro Meter gleichmäßig gemäß Abb. A.45 und Abb. A.46 über die Länge des Anschlusses anzuordnen.

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit	Anhang C4

C.1.2.3 HTE-Compact® 20 oder HTE-Compact® 30

$$\mathsf{D}_{\mathsf{Rd},\mathsf{c}} = \tfrac{1}{1000} \cdot \mathsf{a}_{\mathsf{cd}} \cdot \mathsf{a}_{\mathsf{c},\mathsf{uz}} \cdot \mathsf{a}_{\mathsf{c},\mathsf{z}} \cdot \mathsf{c}_1 \cdot \mathsf{min} \left\{ \begin{matrix} \mathsf{a} \\ 2 \cdot \mathsf{c}_1 + 44 \mathsf{mm} \end{matrix} \right\} \cdot (\mathsf{f}_{\mathsf{ck},\mathsf{cube}})^{1/2}$$

mit: a_{cd}

siehe Tabelle C.10

c₁ Randabstand der Lastresultierenden in mm, gemäß Anhang D3 und D4

a Achsabstand der Drucklager in mm

f_{ck,cube} charakteristische Würfeldruckfestigkeit in N/mm² ≤ C30/37

a_{c,uz} siehe Tabelle C.8 a_{c,z} siehe Tabelle C.9

Tabelle C.8: Faktor ac,uz zur Berücksichtigung der Unterzugsbreite bei Höhenversätzen

Anschlusssituation	Unterzugsbreite [mm]	a _{c,uz}
Abb D44 and Abb D42	175 ≤ b ≤ 240	0,0245 · b ^{2/3}
Abb. B.11 und Abb. B.12	b > 240	0,95
Sonstige	-	1,0

Tabelle C.9: Faktor ac,z zur Berücksichtigung des inneren Hebelarms

Bemessungswert der Druckkraft D _{Rd} [kN/m]	Anschlusssituation	innerer Hebelarm z [mm]	a _{c,z}
	Abb D 44 and Abb D 40	80 ≤ z ≤ 150	1,0
≥ 350	Abb. B.11 und Abb. B.12	z > 150	150/z
	sonstige	-	1,0
< 350	< 350 allgemein		1,0

Tabelle C.10: Bemessungswerte für HTE-Compact® 20 und HTE-Compact® 30

	Betondrucklager HTE-Compact [®] 20	Betondru HTE-Com	•
	ohne Sonderbügel	ohne Sonderbügel	mit Sonderbügel*
a _{cd}	1,70	1,80	2,23
Mindestachsabstand DL Drucklager-Anzahl/m	100 mm 4 - 10	100 mm 4 - 10	80 mm 9 – 12
D _{Rd,CCE} [kN/Lagerpaar]	38,0	45,0	45,0

^{*} Auflagerseitige Anordnung von 4 Sonderbügeln nach Anhang A16 pro Meter gleichmäßig über die Länge des Anschlusses

Bei Überschreitung der Drucklageranzahl oder Unterschreitung des Mindestabstands der Drucklager nach Tabelle C.10, können die Bemessungswerte für HTE-Compact® 30 der Tabelle C.7 entnommen werden.

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit	Anhang C5

C.1.3 Bemessungswerte der plastischen horizontalen Kraft parallel zur Fuge H_{Ilpl,d} im Erdbeben Bemessungsfall

Tabelle C.11: Bemessungswerte der plastischen horizontalen Kraft parallel zur Fuge H_{Ilpl,d} im Erdbeben Bemessungsfall für nichtrostende Stäbe; Zugstäbe und Druckelemente aus Stahl (SCE)

Ø	Dämm- stoff- stärke	NR BetonSt. R _{p0,2} 500	NR BetonSt. R _{p0,2} 700	NR BetonSt. R _{p0,2} 800	NR BetonSt. R _{p0,2} 820	NR RundSt . S460	NR RundSt. S690
[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	80	0,19	0,27	0,29	0,30	0,19	0,28
6	120	0,13	0,18	0,20	0,21	0,13	0,19
0.5	80	0,24	0,34	0,37	0,38	0,23	0,35
6,5	120	0,17	0,23	0,25	0,26	0,16	0,24
7	80	0,30	0,42	0,46	0,47	0,29	0,44
7	120	0,21	0,29	0,32	0,32	0,20	0,30
•	80	0,45	0,63	0,68	0,70	0,43	0,65
8	120	0,31	0,43	0,47	0,48	0,30	0,44
0.5	80	0,74	1,03	1,12	1,15	0,71	1,06
9,5	120	0,51	0,71	0,77	0,79	0,49	0,73
40	80	0,85	1,20	1,30	1,33	0,82	1,23
10	120	0,59	0,83	0,90	0,92	0,57	0,85
44	80	1,13	1,58	1,71	1,75	1,08	1,62
11	120	0,78	1,09	1,19	1,22	0,75	1,13
40	80	1,44	2,02	2,20	2,25	1,39	2,08
12	120	1,01	1,41	1,53	1,57	0,97	1,45
44	80	2,25	3,14	3,41	3,50	2,16	3,24
14	120	1,58	2,21	2,40	2,46	1,52	2,27
16	-	-	-	-	-	3,16	4,74
16	-	-	-	-	-	2,23	3,34
20	-	-	-	-	-	5,92	8,88
20	-		-	-	-	4,23	6,34

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit im Bemessungsfall Erdbeben	Anhang C6

Tabelle C.12: Bemessungswerte der plastischen horizontalen Kraft parallel zur Fuge H_{IIpI,d} im Erdbeben Bemessungsfall für nichtrostende Stäbe; Querkraftstäbe

Ø	Dämmstoff- stärke (Neigung)	NR BetonSt. R _{p0,2} 500	NR BetonSt. R _{p0,2} 700	NR BetonSt. R _{p0,2} 800	NR BetonSt. R _{p0,2} 820
[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
_	80 (α = 45°)	0,14	0,20	0,21	0,22
6	120 (α = 35°)	0,11	0,15	0,17	0,17
6.5	80 (α = 45°)	0,18	0,25	0,27	0,28
6,5	120 (α = 35°)	0,14	0,19	0,21	0,22
7	80 (α = 45°)	0,22	0,31	0,33	0,34
_ ′ [120 (α = 35°)	0,17	0,24	0,26	0,27
8	80 (α = 45°)	0,33	0,46	0,49	0,51
•	120 (α = 35°)	0,25	0,36	0,39	0,40
0.5	80 (α = 45°)	0,54	0,75	0,82	0,84
9,5	120 (α = 35°)	0,42	0,59	0,64	0,66
10	80 (α = 45°)	0,62	0,87	0,95	0,97
10	120 (α = 35°)	0,49	0,69	0,75	0,77
11	80 (α = 45°)	0,82	1,15	1,25	1,29
	120 (α = 35°)	0,65	0,91	0,99	1,01
12	80 (α = 45°)	1,06	1,49	1,62	1,66
12	120 (α = 35°)	0,84	1,17	1,28	1,31
14	80 (α = 45°)	1,66	2,32	2,52	2,59
14	120 (α = 35°)	1,32	1,84	2,00	2,05

Tabelle C.13: Bemessungswerte der plastischen horizontalen Kraft parallel zur Fuge H_{IIpI,d} im Erdbeben Bemessungsfall für Druckelemente aus Beton (CCE)

Druckelementvariante	Dämmstoffstärke	H _{IIpl,d}
aus Beton (CCE)	[mm]	[kN]
HTE-Compact® 20,	80	0,015 · D _{Rd} nach C.1.2
HTE-Compact [®] 30, HTE-Modul	120	0,010 · D _{Rd} nach C.1.2

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit im Bemessungsfall Erdbeben	Anhang C7

C.2 Feuerwiderstand

C.2.1 Leistungsmerkmale bezüglich Tragfähigkeit im Brandfall

Bei Einhaltung der im Anhang C1 bis C5 angegebenen Leistungsmerkmale für den Nachweis unter normalen Temperaturen ist für Anschlüsse mit Schöck Isokorb® gemäß dem vorgesehenen Verwendungszweck auch die Tragfähigkeit im Brandfall für die in Tabelle C.15 angegebene Dauer gewährleistet. Dies gilt für einen Reduktionsbeiwert $\eta_{\rm fl}$ gemäß EN 1992-1-2, Abschnitt 2.4.2 bis $\eta_{\rm fl}$ = 0,7, für Ausführungen gemäß der Abb. C.1 bis Abb. C.7 sowie unter Einhaltung folgender Randbedingungen.

- Die mit Schöck Isokorb® versehene Anschlussfuge ist an der Oberseite bzw. Ober- und Unterseite mit Brandschutzplatten gemäß Abschnitt A.3 vollflächig zu bekleiden (siehe Anhang C9 bis C11).
- Die Brandschutzplatten im Bereich von planmäßigen Zugbeanspruchungen sind entweder mit einem seitlichen Überstand von 10 mm gegenüber dem Dämmstoffkörper (Abb. C.2, Abb. C.3, Abb. C.6 und Abb. C.7) oder mit zusätzlichen Dämmstoffbildnern an beiden Seitenflächen (Abb. C.1, Abb. C.4 und Abb. C.5) auszuführen.
- Der seitliche Überstand von 10 mm bzw. zusätzlicher Dämmstoffbildner an beiden Seitenflächen ist nicht notwendig, wenn die Brandschutzplatten nicht im Bereich von planmäßigen Zugbeanspruchungen angeordnet werden.
- Die erforderlichen Dicken t der Brandschutzplatten, die Mindestachsabstände u und v sowie die Mindestbetondeckung c_{nom} der Betonstahlbewehrung sind Tabelle C.14 zu entnehmen.

Tabelle C.14: Mindestmaße c_{nom}, u und v und erforderliche Dicke der Brandschutzplatten t in [mm]

c _{nom} [mm]	gemäß Expositionsklasse nach EN 1992-1-1	
min u [mm]	35	
v ₁ /v ₂ * [mm] 20/21		
min t [mm]	gemäß technischer Dokumentation	

^{*} siehe Abb. C.1, Abb. C.3 bis Abb. C.6

Tabelle C.15: Feuerwiderstandsdauer (Tragfähigkeit)

Ausführungsvariante gemäß	Feuerwiderstandsdauer (Tragfähigkeit) in Minuten
Abb. C.1	120
Abb. C.2	120
Abb. C.3	120
Abb. C.4	120
Abb. C.5	60
Abb. C.6	60
Abb. C.7	120

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C8

747724 23 8 03 01-15/23



Abb. C.1: Beispiel für Schöck Isokorb® Typ K, K-F mit CCE

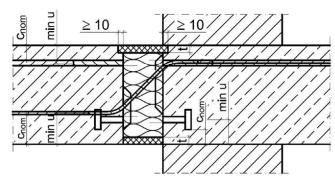


Abb. C.2: Beispiel für Schöck Isokorb® Typ K, K-F (analog Typ O) mit SCE

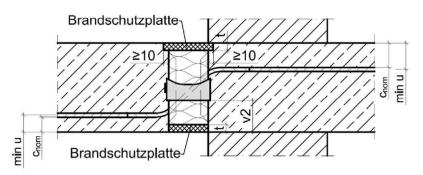


Abb. C.3: Beispiel für Schöck Isokorb® Typ Q mit CCE (oder SCE)

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C9

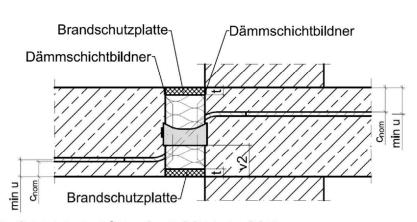


Abb. C.4: Beispiel für Schöck Isokorb® Typ Q mit CCE (oder SCE)

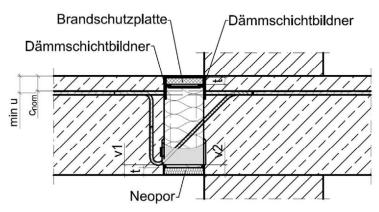


Abb. C.5: Beispiel für Schöck Isokorb® Typ K, K-F mit CCE (oder SCE)

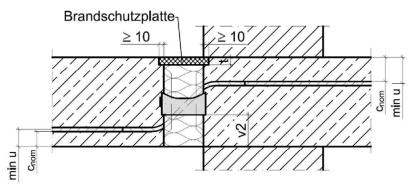


Abb. C.6: Beispiel für Schöck Isokorb® Typ Q mit CCE

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C10

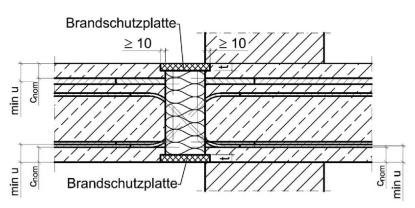


Abb. C.7: Beispiel für Schöck Isokorb® Typ D (analog Typ A und Typ F) mit SCE

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl		
Leistungsmerkmale Tragfähigkeit im Brandfall	Anhang C11	

C.2.2 Feuerwiderstandsfähigkeit des Bauteils (informativ)

Decken- oder Dachkonstruktionen sowie Balkon- und Laubengangkonstruktionen, die gemäß dem vorgesehenen Verwendungszweck mit Schöck Isokorb® - wie in Anhang C9 bis C11 dargestellt - an Stahlbetonbauteile angeschlossen werden, können hinsichtlich des Feuerwiderstandes gemäß EN 13501-2, wie in Tabelle C.16 angegeben, klassifiziert werden. Folgende Randbedingungen sind dabei zu beachten:

- Die Leistung hinsichtlich der Tragfähigkeit im Brandfall wurde für Schöck Isokorb[®] erklärt.
- Siehe Abschnitt C.2.1, Spiegelstrich 1 bis 4 sowie Tabelle C.14.
- Bei Decken- und Dachkonstruktionen sind die Anschlüsse der übrigen, nicht mit Schöck Isokorb®
 angeschlossenen Ränder der Decken- oder Dachkonstruktionen an anschließende oder unterstützende
 Bauteile gemäß den Bestimmungen der Mitgliedstaaten für den entsprechenden Feuerwiderstand
 nachzuweisen.

Tabelle C.16: Klassifizierung des Bauteils

Ausführungsvariante	Decken- oder Dachkonstruktion mit raumabschließender Funktion	Balkon- und Laubengang- konstruktion, Attiken, Brüstungen
Abb. C.1	REI 120	R 120
Abb. C.2	REI 120	R 120
Abb. C.3	REI 120	R 120
Abb. C.4	REI 120	R 120
Abb. C.5	REI 60	R 60
Abb. C.6	REI 60	R 60
Abb. C.7	REI 120	R 120

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Klassifizierung des Bauteils (informativ) Feuerwiderstandsfähigkeit	Anhang C12

C.3 Wärmedurchlasswiderstand

Der äquivalente Wärmedurchlasswiderstand R_{eq,TI} des Schöck Isokorb[®] wird nach EN ISO 6946 und EN ISO 10211 mittels Finite-Elemente-Methode und einem detaillierten 3D-Modell gemäß den in Abb. C.8 für Konstruktionen mit Druckelementen aus Beton (CCE) beziehungsweise Abb. C.9 für Konstruktionen mit Druckelementen aus Stahl (SCE) dargestellten Querschnitten bestimmt:

$$R_{cal} = R_{eqTI} + R_{con}$$

$$R_{eq,TI} = R_{cal} - R_{con} = R_{cal} - \frac{0.06 \, m}{2.3 \, W / (m * K)}$$

$$\lambda_{eq,TI} = \frac{d_{n,TI}}{R_{eq,TI}}$$

mit:

R_{cal} berechneter Wärmedurchlasswiderstand für die Konstruktion in Abb. C.8 oder Abb. C.9

Req,TI äquivalenter Wärmedurchlasswiderstand des tragenden Wärmedämmelementes

R_{con} Wärmedurchlasswiderstand der Betonstreifen d_{n,Ti} Nenndicke des tragenden Wärmedämmelementes

λ_{eq,TI} äquivalente Wärmeleitfähigkeit des tragenden Wärmedämmelementes

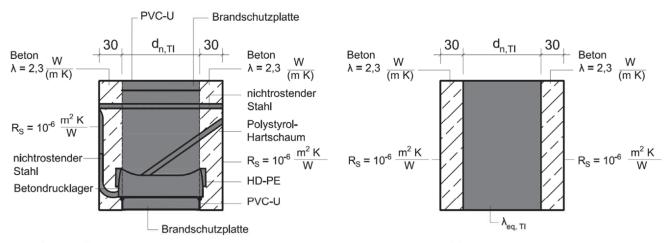


Abb. C.8: Querschnitt der Konstruktion mit Druckelementen aus Beton (CCE) zur Bestimmung des äquivalenten Wärmedurchlasswiderstandes R_{eq,TI} sowie vereinfachtes Modell mit λ_{eq,TI}

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Wärmedurchlasswiderstand	Anhang C13

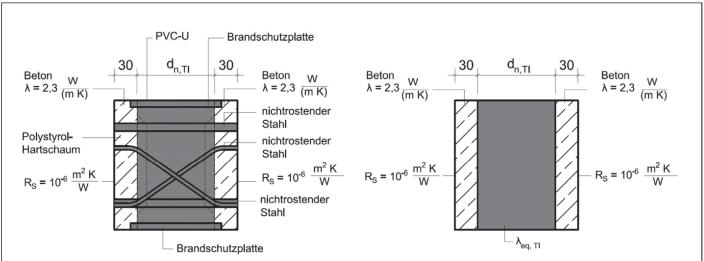


Abb. C.9: Querschnitt der Konstruktion mit Druckelementen aus Stahl (SCE) zur Bestimmung des äquivalenten Wärmedurchlasswiderstandes $R_{eq,Tl}$ sowie vereinfachtes Modell mit $\lambda_{eq,Tl}$

Die Bemessungswerte der Wärmeleitfähigkeit der Komponenten können der Tabelle C.17 entnommen werden.

Tabelle C.17: Bemessungswerte der Wärmeleitfähigkeiten

Material	Bemessungswert der Wärmeleitfähigkeit λ [W/(m*K)]	Datengrundlage gemäß
Hochleistungsfeinbeton	Gemäß technischer Dokumentation	EN 12664 und EN ISO 10456
Polystyrol-Hartschaum (EPS)	0,031	EN ISO 13163 und EN ISO 10456
Nichtrostender Stahl	13-15	EN 10088-1
PE-HD	0,5	EN ISO 10456
PVC-U	0,17	EN ISO 10456
Brandschutzplatte	Gemäß technischer Dokumentation	EN ISO 12664 und EN ISO 10456

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Wärmedurchlasswiderstand	Anhang C14

C.4 Bewertete Trittschallpegelminderung ΔL_w

Die bewertete Trittschallpegelminderung ΔL_w dient als Eingangsgröße für die rechnerische Prognose des Trittschallschutzes im Gebäude nach EN ISO 12354-2. Die Werte für ΔL_w nach Tabelle C.18 bis Tabelle C.32 gelten sowohl für eine Ausführung mit als auch ohne Brandschutzplatten.

Tabelle C.18: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämm	Elementhöhe H 180 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm											
	Zugstäbe	Q	uerkraftstäbe	Dr	ruckelemente ¹	∆L _w [dB]						
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.							
13		10		18		8						
8		10		18		8						
8		10		11		11						
8		8		11		11						
4	40	8		11	LITEOO	11						
4	10	8	8	5	HTE30	13						
4		4		5		15						
2		4		5		15						
2		4		2		17						
2		2		2		18						

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE30 = Betondrucklager HTE-Compact® 30 oder HTE-Modul

Tabelle C.19: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

	Elementhöhe H 180 mm											
Dämms	Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm											
	Zugstäbe Querkraftstäbe Druckelemente¹ ∆L _w [dB]											
n	Ø₂ [mm]	n	Ø [mm]	n	Bez.							
7		4		6		17						
4	6,5	4	8	4	HTE20	18						
4		2		4		20						

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Trittschallpegelminderung	Anhang C15

HTE20 = Betondrucklager HTE-Compact® 20

Tabelle C.20: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Elementhöhe H 180 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm										
	Zugstäbe	-	uerkraftstäbe ositiv / negativ)	Dr	ruckelemente ¹	∆L _w [dB]				
n	Ø₂ [mm]	n	Ø [mm]	n	Bez.					
11		7/4		17		10				
8		4/4		13		12				
6	10	4/4	8	8	LITE20	13				
4	10	4/1	0	5	HTE30	16				
3		4/0		4		16				
2		4/0		3		18				

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5, HTE30 = Betondrucklager HTE-Compact® 30 oder HTE-Modul

Tabelle C.21: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämm	Elementhöhe H 180 mm Dämmstoffstärke 80 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm										
	Zugstäbe Querkraftstäbe Druckelemente¹ ∆L _w [d										
n	Ø₂ [mm]	n	Ø [mm]	n	Bez.						
12		9		18		6					
7	40	8		10	LITE20	7					
5	10	5	8	6	HTE30	11					
2		4		3		13					

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5, HTE30 = Betondrucklager HTE-Compact® 30 oder HTE-Modul

Tabelle C.22: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämms	Elementhöhe H 220 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm										
	Zugstäbe	Q	uerkraftstäbe	Dr	uckelemente ¹	∆L _w [dB]					
n	Ø₂ [mm]	n	Ø [mm]	n	Bez.						
12		5		8		14					
7		4		6		15					
4	0.5	4		4	LITEOO	16					
2	6,5	4	8	2	HTE20	17					
2		2		2		20					
2		1		2		24					

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5, HTE20 = Betondrucklager HTE-Compact® 20

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Trittschallpegelminderung	Anhang C16

Tabelle C.23: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämm	Elementhöhe H 220 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 50 mm										
	Zugstäbe	Q	uerkraftstäbe	Dı	ruckelemente ¹	∆L _w [dB]					
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.						
12		5		8		16					
7		4		6		17					
4	6,5	4	8	4	HTE20	18					
2		4		2		19					
2		2		2		21					

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Tabelle C.24: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämms	Elementhöhe H 250 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm										
	Zugstäbe	Q	uerkraftstäbe	Dı	ruckelemente ¹	∆L _w [dB]					
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.						
12		5		8		16					
7		4		6		18					
4	6,5	4	8	4	HTE20	19					
2		4		2		20					
2		2		2		21					

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Tabelle C.25: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

	Elementhöhe H 220 mm											
Dämm	Dämmstoffstärke 120 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm											
	Zugstäbe	Q	uerkraftstäbe	Dr	ruckelemente ¹	∆L _w [dB]						
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.							
13		9		18		10						
12		9		18		10						
9		7		12		11						
8		6		11		12						
6	10	3		8	LITE20	14						
6	10	3	8	7	HTE30	14						
5		3		6		15						
4		2		5		16						
3		2		4		16						
2		2		3		17						

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5, HTE30 = Betondrucklager HTE-Compact[®] 30 oder HTE-Modul

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Leistungsmerkmale

Trittschallpegelminderung

Anhang C17

Tabelle C.26: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ K

Dämm	Elementhöhe H 220 mm Dämmstoffstärke 80 mm, Elementlänge 1000 mm, Betondeckung der Zugstäbe 35 mm											
	Zugstäbe	Qı	uerkraftstäbe	Dru	uckelemente ¹	∆L _w [dB]						
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.							
13		9		18		6						
12		8		18		7						
10		7		16		8						
9		7		12		9						
8		6		11		10						
6	10	3	8	8	HTE30	11						
6		3		7		12						
5		3		6		12						
4		3		5		12						
3		2		4		14						
2		2		3		15						

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE30 = Betondrucklager HTE-Compact® 30 oder HTE-Modul

Tabelle C.27: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ Q

Elementhöhe H 180 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm										
	Zugstäbe Querkraftstäbe Druckelemente¹ ∆L _w [dB]									
n	Ø ₂ [mm]	n	Ø [mm]	n	Bez.					
-		8		6		10				
-		5		4		13				
-		3	10	4	HTE20	14				
-		2		4		15				
-		2		1		17				

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Tabelle C.28: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ Q

Elementhöhe H 180 mm Dämmstoffstärke 80 mm, Elementlänge 1000 mm						
	Zugstäbe Querkraftstäbe Druckelemente¹ ∆L _w [d					∆L _w [dB]
n	\emptyset_2 [mm]	n	Ø [mm]	n	Bez.	
-		6				10
-		4	10		LITEOO	10 12
-		2	10 4	HTE20	16	
-		1				17

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Leistungsmerkmale

Trittschallpegelminderung

Anhang C18

Tabelle C.29: Bewertete Trittschallpegelminderungen ∆Lw, Schöck Isokorb® Typ Q

Elementhöhe H 180 mm						
Dämmstoffstärke 120 mm, Elementlänge 500 mm						
Zugstäbe Querkraftstäbe Druckelemente¹ ∆L _w [d				∆L _w [dB]		
n	Ø ₂ [mm]	n	Ø [mm]	n	Ø [mm]	
-		4	40	2	4.4	12
-		2	10	1	14	14
Druckele	mente aus Stahl (S	SCE) gen	näß Abschnitt A.2.	4		

Tabelle C.30: Bewertete Trittschallpegelminderungen ΔL_w , Schöck Isokorb® Typ Q

Elementhöhe H 180 mm						
Dämmstoffstärke 120 mm, Elementlänge 1000 mm						
	Zugstäbe	Q	uerkraftstäbe	Dr	ruckelemente ¹	∆L _w [dB]
n	Ø₂ [mm]	N	Ø [mm]	n	Bez.	
-		8		4		14
-		6	6	4	HTE20	16
-		5	6	4		16
-		2		2		20

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Tabelle C.31: Bewertete Trittschallpegelminderungen ΔL_w, Schöck Isokorb® Typ Q

Elementhöhe H 180 mm Dämmstoffstärke 120 mm, Elementlänge 1000 mm						
	Zugstäbe	Querkraftstäbe (Gesamtzahl aus gleicher Anzahl pos. und neg.)		Druckelemente ¹		∆L _w [dB]
n	Ø ₂ [mm]	N	Ø [mm]	n	Bez.	
-		16		6		7
-		10	40	4	HTE20	10
-		4	10	4		13
-		0		4		16

¹ Druckelemente aus Beton (CCE) gemäß Abschnitt A.2.5,

HTE20 = Betondrucklager HTE-Compact® 20

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Trittschallpegelminderung	Anhang C19

Tabelle C.32: Bewertete Trittschallpegelminderungen ΔL_w , Schöck Isokorb® Typ D

Dämms	stoffstärke 120 mn		ementhöhe H 180 Itlänge 1000 mm, I		eckung der Zugs	täbe 35 mm
	Zugstäbe	(Gesan	Querkraftstäbe (Gesamtzahl aus gleicher Anzahl pos. und neg.)		Druckelemente ¹	
n	Ø₂ [mm]	n	Ø [mm]	n	Ø [mm]	
12		12		12		8
7	40	12	40	7	40	8
7	12	4	10	7	12	11
4		4		4		11

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Leistungsmerkmale Trittschallpegelminderung	Anhang C20

D.1 Bemessung

D.1.1 Allgemeines

- Bemessung nach EN 1992-1-1 und EN 1993-1-1 (im Bereich der Dämmfuge)
- Erdbebenbemessung nach EN 1998-1 mit Verhaltensbeiwert:

q_a = 1,5 Anschluss mit einer Anschlusslinie (Anwendungsbeispiel: frei auskragender Balkon)

q_a = 1,0 Anschluss mit mehr als einer Anschlusslinie

(Anwendungsbeispiel: Balkon über Eck, Loggia)

q_a = 1,0 bei Aufnahme der Erdbebenlast mit Schöck Isokorb® Typ H

- Statischer Nachweis ist für jeden Einzelfall zu erbringen
- Typengeprüfte Bemessungstabellen dürfen verwendet werden

Ermittlung der Schnittgrößen:

- Nur durch linear-elastische Verfahren
- Verfahren mit Umlagerung der Schnittgrößen, der Plastizitätstheorie und nichtlineare Verfahren sind nicht anwendbar
- Grundsätze für die Bemessung von Stabwerken nach EN 1992-1-1, Abschnitt 5.6.4 sind anzuwenden
- Durch Fachwerkmodelle nach Anhang D3 bis D5 mit z = z_{Fachwerk}
- Schnittgrößen M_{Ed} und V_{Ed} in Bemessungsschnitt ansetzen, siehe Abb. D.1 bis Abb. D.15
- Querkraftstäbe erhalten nur Zugkräfte
- Veränderliche Momente und Querkräfte entlang des Plattenrandes berücksichtigen (siehe Abschnitt B.1.1)
- Die in der Dämmfuge erforderliche Querkraftbewehrung bestimmt nicht die Mindestplattendicke nach EN 1992-1-1, Abschnitt 9.3.2(1)

Bauseitige Vertikalbewehrung an den Stirnflächen, die den anzubindenden Bauteilen zugewandt sind:

 Die erforderliche Vertikalbewehrung ergibt sich aus Aufhänge- und Spaltzugbewehrung, wobei mindestens eine konstruktive Randeinfassung nach Abschnitt B.2.2 anzuordnen ist

$$V = \max \left\{ \begin{matrix} R \\ A+S \end{matrix} \right\}$$

mit:

V bauseitige Vertikalbewehrung

R konstruktive Randeinfassung nach Abschnitt B.2.2

A Aufhängebewehrung S Spaltzugbewehrung

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Bemessung Allgemeines	Anhang D1

A – Aufhängebewehrung

Balkonseitig ist eine Aufhängebewehrung anzuordnen, wenn die Drucklager bzw. Zugstäbe in höherer Anzahl als die Querkraftstäbe vorhanden sind. Die erforderliche Aufhängebewehrung ist über die gesamte Höhe bis in den Zuggurt des angeschlossenen Bauteils zu führen.

positive Querkräfte (nach unten gerichtet):

negative Querkräfte (nach oben gerichtet):

$$A = \frac{V_{Ed}}{f_{yd}} \cdot \left(1 - \frac{n_{Q-Stab}(+)}{n_{CE}}\right) \text{ mit } \frac{n_{Q-Stab}(+)}{n_{CE}} \leq 1 \\ A = \frac{V_{Ed}}{f_{yd}} \cdot \left(1 - \frac{n_{Q-Stab}(-)}{n_{ZS}}\right) \text{ mit } \frac{n_{Q-Stab}(-)}{n_{ZS}} \leq 1$$

$$A = \frac{V_{Ed}}{f_{yd}} \cdot \left(1 - \frac{n_{Q-Stab}(-)}{n_{ZS}}\right) mit \frac{n_{Q-Stab}(-)}{n_{ZS}} \le 1$$

mit:

erforderliche Aufhängebewehrung Α

Anzahl der positiven (+) bzw. negativen (-) Querkraftstäbe **n**Q-Stab

Anzahl der Drucklager Anzahl der Zugstäbe

 V_{Ed} gesamte einwirkende Querkraft

S - Spaltzugbewehrung

Balkonseite:

$$Z_{Sd} = 0.25 \cdot D_{Ed} \left(1 - \frac{a}{2 \cdot e'} \right)$$

$$S_{B} = \frac{Z_{Sd}}{f_{yd}}$$

mit:

 Z_{Sd} resultierende Spaltzugkraft

 D_{Ed} rechtwinklig und mittig auf die Teilfläche einwirkende

Druckkraft nach den Anhängen D3 bis D5

Höhe der Teilfläche, auf welche Ded wirkt а CCE: 20 mm für HTE-Compact® 20

30 mm für HTE-Compact® 30 oder HTE-Modul

SCE: Höhe der Stahlplatte

Abstand des Druckelementes zum nächstgelegenen Rand; $e' = \min \{c_1; h - c_1\}$ e'

h Höhe des Plattenanschlusses

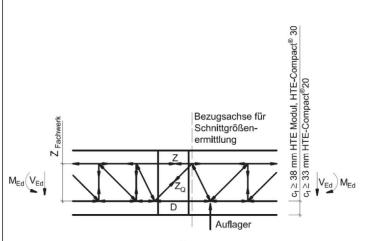
Randabstand der Lastresultierenden (Anhänge D3 und D5) C₁

balkonseitig erforderliche Spaltzugbewehrung

Deckenseite:

$$S_D = \begin{cases} 0 \text{ für direkte Lagerung} \\ S_B \text{ für indirekte Lagerung} \end{cases}$$

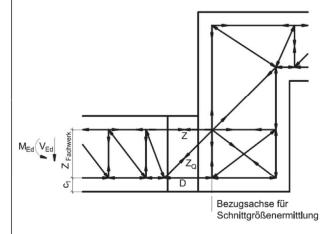
mit:


deckenseitig erforderliche Spaltzugbewehrung

- Bei nach oben gerichteten (abhebenden) Querkräften oder für obenliegenden Druckgurt und unten liegenden Zuggurt sind die Angaben für die bauseitige Vertikalbewehrung sinngemäß für den entgegengesetzten Lastabtrag umzustellen.
- Anrechenbare Vertikalbewehrung:
 - konstruktive Randeinfassung nach Abschnitt B.2.2
 - Gitterträger mit einem maximalen Abstand von 100 mm ab Dämmfuge
 - Sonderbügel (nur auf Spaltzugbewehrung anrechenbar)
 - vertikale Schenkel der Querkraftstäbe bei Schöck Isokorb® Typen K, K-F, K-O, K-U und K-HV, wenn der Achsabstand zwischen Querkraftstäben und bauseitiger Anschlussbewehrung ≤ 20 mm

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Bemessung Allgemeines	Anhang D2

747724 23 8.03.01-15/23


Bezugsachse für Schnittgrößenermittlung

Z

Auflager

Abb. D.1: Schöck Isokorb® Typ K, K-F (Variante mehrteilig) mit Druckelementen aus Beton

Abb. D.2: Schöck Isokorb® Typ K, K-F (Variante mehrteilig), mit Druckelementen aus Stahl

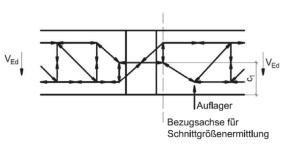
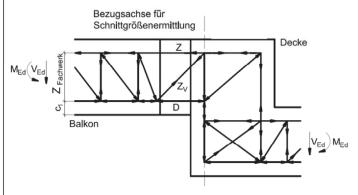



Abb. D.3: Schöck Isokorb® Typ K-HV

Abb. D.4: Schöck Isokorb® Typ Q

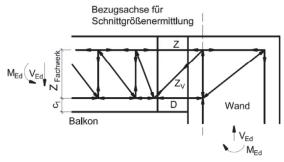


Abb. D.5: Schöck Isokorb® Typ K-O und K-O-F mit Anschluss an Höhenversatz

Abb. D.6: Schöck Isokorb® Typ K-O und K-O-F mit Anschluss an Wand

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Bemessung Fachwerkmodelle	Anhang D3

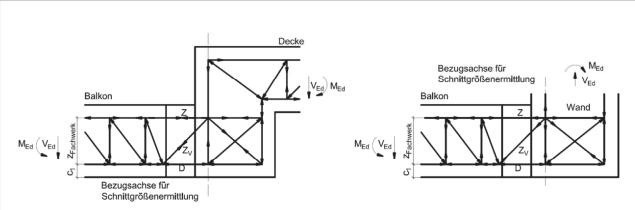


Abb. D.7: Schöck Isokorb® Typ K-U und K-U-F mit Anschluss an Höhenversatz

Abb. D.8: Schöck Isokorb® Typ K-U und K-U-F mit Anschluss an Wand

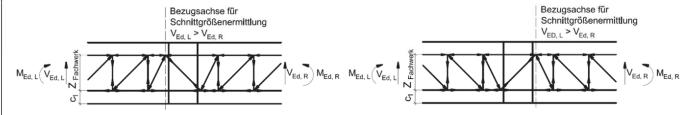


Abb. D.9: Schöck Isokorb® Typ D *

Abb. D.10: Schöck Isokorb® Typ D *

* Der Bemessungsschnitt kann alternativ in der Fugenmitte angenommen werden.

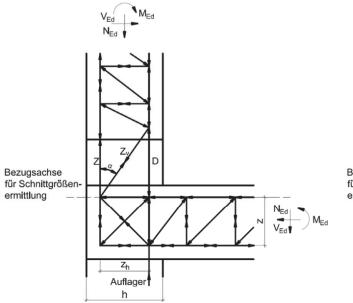


Abb. D.11: Schöck Isokorb® Typ A

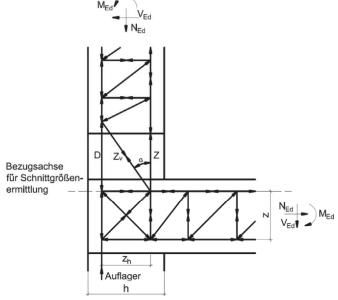
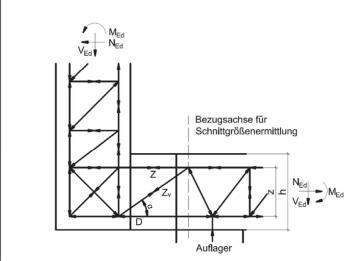



Abb. D.12: Schöck Isokorb® Typ A

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Bemessung Fachwerkmodelle	Anhang D4

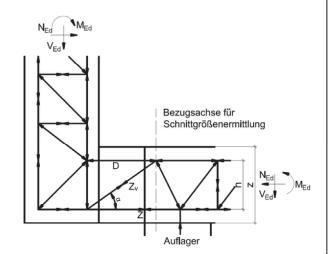


Abb. D.13: Schöck Isokorb® Typ F

Abb. D.14: Schöck Isokorb® Typ F

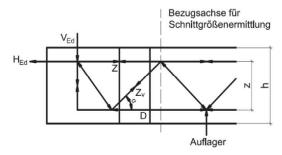


Abb. D.15: Schöck Isokorb® Typ O

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Bemessung Fachwerkmodelle	Anhang D5

D.1.2 Nachweis im Grenzzustand der Tragfähigkeit

D.1.2.1 Nachweis der Zugstäbe und Querkraftstäbe

- Nachweis nach EN 1993-1-4 mit Bemessungswerten nach Tabelle C.1
- Nachweis der Schweißverbindung zwischen Betonstahl und nichtrostendem Betonstahl bzw. Rundstahl nicht erforderlich

D.1.2.2 Nachweis der Horizontalstäbe

Bemessungswerte f
ür die Horizontalst
äbe nach C.1.1.4 gelten ohne weiteren Nachweis.

D.1.2.3 Nachweis der Druckelemente aus Stahl SCE

- ansetzbare Beanspruchbarkeiten gemäß Tabelle C.6
- Druckstäbe mit angeschweißten Druckplatten:
 Einleitung der Druckspannungen in den Beton ist als Teilflächenbelastung nach EN 1992-1-1,
 Abschnitt 6.7 nachzuweisen
- Überlagerung benachbarter Lastausbreitungsflächen berücksichtigen
- Aufnahme horizontaler Spaltzugkräfte sind nachzuweisen

D.1.2.4 Nachweis der Druckelemente aus Beton CCE

D.1.2.4.1 Druckelemente aus Beton: HTE-Modul

- Bemessungswert D_{Rd} nach Abschnitt C.1.2 unter Beachtung von Abschnitt C.1.2.2
- Bemessungswert gilt auf der sicheren Seite liegend auch für Betondrucklager HTE-Compact® 30

D.1.2.4.2 Druckelemente aus Beton: HTE-Compact® 20 und HTE-Compact® 30

Bemessungswert für die Drucklagerkraft nach Abschnitt C.1.2 unter Beachtung von Abschnitt C.1.2.3

D.1.2.5 Querkrafttragfähigkeit im Bereich der Dämmfuge

- Querkrafttragfähigkeit der anschließenden Deckenplatte nach EN 1992-1-1, Abschnitt 6.2
- Nachweis des erforderlichen Biegerollendurchmessers kann bei Einhaltung der beiden folgenden Bedingungen entfallen:
 - Biegerollendurchmesser gemäß Abschnitt A.2.2
 - Achsabstand der Querkraftstäbe im Mittel und zum freien Rand bzw. zur Dehnungsfuge
 ≥ 100 mm (siehe Abschnitt A.2).
- Achsabstand < 100 mm: Nachweis des erforderlichen Biegerollendurchmesser ist nach EN 1992-1-1, Abschnitt 8.3 zu führen

D.1.2.6 Nachweis der Ermüdung infolge Temperaturdifferenz

Nachweis durch Begrenzung der Fugenabstände nach Tabelle B.1

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Bemessung Nachweise im Grenzzustand der Tragfähigkeit	Anhang D6

D.1.2.7 Festlegungen für die Nachweise im Krafteinleitungsbereich der Betonbauteile

- Querkrafttragfähigkeit der ungestörten Platten nach EN 1992-1-1, Abschnitt 6.2
- Für Bemessungswert der Querkrafttragfähigkeit der Platten ohne Querkraftbewehrung wird eine gleichmäßig über die Betondruckzone verteilte Querkraft zugrunde gelegt, daher sind die Elemente mit gleichmäßigem Abstand einzubauen.
- Die bauseitige Bügelbewehrung im Verankerungsbereich (Randbalken) bei Ausführung mittels Zug- und Querkraftstäben mit Ankerkopf gemäß Anhang B7 bis B9 ist wie folgt auszubilden. Mindestens zwischen zwei sowie neben den außenliegenden Zug- bzw. Querkraftstäben ist ein Bügel anzuordnen. Der Querschnitt der Bügel ist unter Berücksichtigung der Fachwerkmodelle in Anhang D3 bis Anhang D5 für die gesamte einwirkende Längskraft der Zug- und Querkraftstäbe zu bemessen und darf für die statischen Nachweise des Randbalkens berücksichtigt werden.

D.1.2.8 Verankerungslängen und Übergreifungsstöße der durch die Wärmdämmfuge führenden Stäbe

- Zur Verankerung und Übergreifung nur die gerippten Stababschnitte heranziehen.
- Zugstäbe sind mit Zugstäben der angrenzenden Platten zu stoßen.
- Bei Verwendung von Zugstäben mit Durchmesserkombination (siehe Abschnitt A.2.1) ist der Zuschlag der Übergreifungslänge ΔI₀ nach Tabelle A.1 und Tabelle A.2 zu berücksichtigen.
- Verankerung der Querkraftstäbe gemäß Abschnitt A.2.2, sofern sich nicht nach EN 1992-1-1, Gleichung (8.10) höhere Werte ergeben.
- Verankerung der Horizontalstäbe gemäß A.2.3, sofern sich nicht nach EN 1992-1-1, Gleichung (8.10) höhere Werte ergeben.
- Werden Querkraftstäbe und Druckglieder nicht in einer Ebene verlegt, Verankerungslänge für Querkraftstäbe in der Druckzone wie in der Zugzone bestimmen.
- Druckstäbe sind mindestens mit lbd nach EN 1992-1-1 in den Platten zu verankern.

Zur Aufnahme der entstehenden Querzugkräfte ist zusätzlich zur Querbewehrung gemäß EN 1992-1-1, Abschnitt 8.7.4 im Übergreifungsbereich der Stäbe bei einem Achsabstand > 20 mm eine Querbewehrung gemäß EN 1992-1-1, Abschnitt 8.7.4.1 anzuordnen und am Querschnittsrand zu verankern.

Im Bereich des Schöck Isokorb® ist eine Staffelung der Zugbewehrung nicht zulässig.

Plattenanschlüsse übertragen ausschließlich Querkraft:

- Zugbewehrung der anzuschließenden Platte ist an der Stirnseite mittels Haken in der Druckzone zu verankern.
- Alternative: Steckbügel an jedem Querkraftstab oder Gitterträger, bei Verwendung von Gitterträgern muss die Zugbewehrung über den Gitterträgeruntergurten liegen (siehe auch B.2.2).
- Ausführung des Querkraftstabes in abgebogener Form möglich, mit angegebenen Konstruktionsdetails nach Abschnitt A.2.2.

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl

Bemessung
Verankerungs- und Übergreifungslängen

Anhang D7

D.1.3 Nachweis im Grenzzustand der Gebrauchstauglichkeit

D.1.3.1 Begrenzung der Rissbreiten

- Es gilt EN 1992-1-1, Abschnitt 7.3.
- An der Stirnseite der Fugen sowie im Krafteinleitungsbereich ist kein zusätzlicher Nachweis erforderlich, wenn die Regelungen dieser Europäisch Technischen Bewertung eingehalten werden.

D.1.3.2 Begrenzung der Verformung

Bei der Berechnung der Durchbiegung sind folgende Einflussfaktoren zu berücksichtigen:

- elastische Verformungen des Plattenanschlusses, wie nachfolgend beschrieben
- elastische Verformung des angrenzenden Plattenbetons
- Temperaturdehnungen

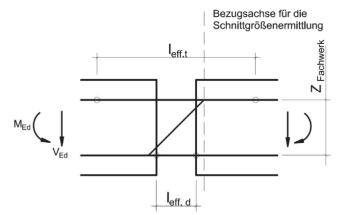
Nachweis der Verformungen:

- quasi-ständige Einwirkungskombination ansetzen, gemäß den Anhängen D9 bis D11
- Modell für Ermittlung der Biegeverformung in der Fuge: siehe Anhänge D9 bis D11
- elastische Verformungen der Zugstäbe in Abhängigkeit der ansetzbaren Streckgrenzen (Tabelle C.1) ermitteln

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Bemessung Nachweise im Grenzzustand der Gebrauchstauglichkeit	Anhang D8

Zugband:

$$\begin{split} \Delta I_t &= \epsilon_t \cdot I_{\text{eff.t}} = \frac{\sigma_t}{E_t} \cdot I_{\text{eff.t}} \\ \text{mit E}_t &= 160.000 \text{ N/mm}^2 \text{ für nichtrostenden Betonstahl} \end{split}$$
mit E_t = 200.000 N/mm² für nichtrostenden Rundstahl


$$\begin{split} \Delta I_{d1} &= \epsilon_{d} \cdot I_{eff.d} = \frac{\sigma_{d}}{\epsilon_{d}} \cdot I_{eff.d} \\ mit \; E_{d} &= 45.000 \; N/mm^{2} \end{split}$$
Drucklager aus Beton (CCE):

 $\Delta I_{d2,GZG} = -0,275 \text{ mm}$ Angrenzende Materialien: Druckgurt: $\Delta I_d = \Delta I_{d1} + \Delta I_{d2,GZT}$

 $\Delta I_d = \epsilon_d \cdot I_{eff.d} = \frac{\sigma_d}{E_d} \cdot I_{eff.d}$ Drucklager aus Stahl (SCE):

mit E_d = 160.000 N/mm² für nichtrostenden Betonstahl mit E_d = 200.000 N/mm² für nichtrostenden Rundstahl

 $\tan \alpha_{\text{Fuge}} = \frac{\Delta I_{\text{t}} - \Delta I_{\text{d}}}{z}$ Drehwinkel in der Fuge:

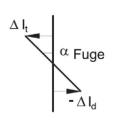


Abb. D.16: Modell für die Ermittlung der Biegeverformung in der Fuge

Sahäak laakarh®	mit Druckelementen:	auc Batan adar Stahl

Bemessung

Modell zur Ermittlung der Biegeverformung in der Fuge

Anhang D9

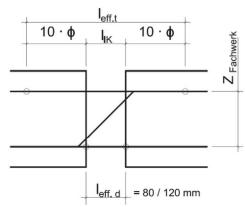


Abb. D.17: leff für Zugstäbe aus nichtrostendem Betonstahl in der Fuge und Druckelementen aus Beton (CCE)

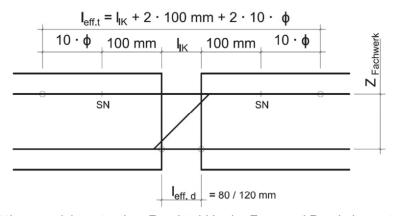


Abb. D.18: leff für Zugstäbe aus nichtrostendem Rundstahl in der Fuge und Druckelementen aus Beton (CCE)

Schöck Isokorb® mit Druckelementen aus Beton oder Stahl	
Bemessung Modell zur Ermittlung der Biegeverformung in der Fuge	Anhang D10

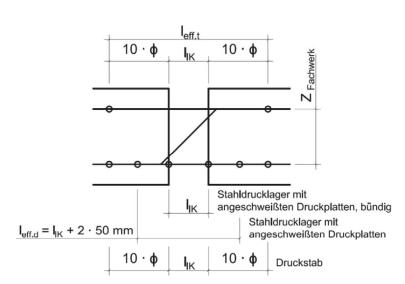


Abb. D.19: leff für Zugstäbe aus nichtrostendem Betonstahl in der Fuge und Druckelementen aus Stahl (SCE)

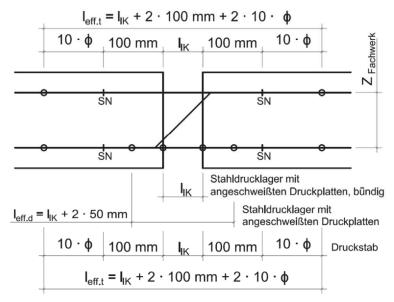


Abb. D.20: leff für Zugstäbe aus nichtrostendem Rundstahl in der Fuge und Druckelemente aus Stahl (SCE)

Schöck Isokorb [®] mit Druckelementen aus Beton oder Stahl	
Bemessung Modell zur Ermittlung der Biegeverformung in der Fuge	Anhang D11